summaryrefslogtreecommitdiff
path: root/core/rid_owner.h
blob: 3e5635d385a18a5b9621b7a3058a419012fbaf1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#ifndef RID_OWNER_H
#define RID_OWNER_H

#include "core/print_string.h"
#include "core/rid.h"

class RID_AllocBase {

	static volatile uint64_t base_id;

protected:
	static RID _make_from_id(uint64_t p_id) {
		RID rid;
		rid._id = p_id;
		return rid;
	}

	static uint64_t _gen_id() {
		return atomic_increment(&base_id);
	}

	static RID _gen_rid() {
		return _make_from_id(_gen_id());
	}

public:
	virtual ~RID_AllocBase() {}
};

template <class T>
class RID_Alloc : public RID_AllocBase {

	T **chunks;
	uint32_t **free_list_chunks;
	uint32_t **validator_chunks;

	uint32_t elements_in_chunk;
	uint32_t max_alloc;
	uint32_t alloc_count;

	const char *description;

public:
	RID make_rid(const T &p_value) {

		if (alloc_count == max_alloc) {
			//allocate a new chunk
			uint32_t chunk_count = alloc_count == 0 ? 0 : (max_alloc / elements_in_chunk);

			//grow chunks
			chunks = (T **)memrealloc(chunks, sizeof(T *) * (chunk_count + 1));
			chunks[chunk_count] = (T *)memalloc(sizeof(T) * elements_in_chunk); //but don't initialize

			//grow validators
			validator_chunks = (uint32_t **)memrealloc(validator_chunks, sizeof(uint32_t *) * (chunk_count + 1));
			validator_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk);
			//grow free lists
			free_list_chunks = (uint32_t **)memrealloc(free_list_chunks, sizeof(uint32_t *) * (chunk_count + 1));
			free_list_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk);

			//initialize
			for (uint32_t i = 0; i < elements_in_chunk; i++) {
				//dont initialize chunk
				validator_chunks[chunk_count][i] = 0xFFFFFFFF;
				free_list_chunks[chunk_count][i] = alloc_count + i;
			}

			max_alloc += elements_in_chunk;
		}

		uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk];

		uint32_t free_chunk = free_index / elements_in_chunk;
		uint32_t free_element = free_index % elements_in_chunk;

		T *ptr = &chunks[free_chunk][free_element];
		memnew_placement(ptr, T(p_value));

		uint32_t validator = (uint32_t)(_gen_id() % 0xFFFFFFFF);
		uint64_t id = validator;
		id <<= 32;
		id |= free_index;

		validator_chunks[free_chunk][free_element] = validator;
		alloc_count++;

		return _make_from_id(id);
	}

	_FORCE_INLINE_ T *getornull(const RID &p_rid) {

		uint64_t id = p_rid.get_id();
		uint32_t idx = uint32_t(id & 0xFFFFFFFF);
		if (unlikely(idx >= alloc_count)) {
			return NULL;
		}

		uint32_t idx_chunk = idx / elements_in_chunk;
		uint32_t idx_element = idx % elements_in_chunk;

		uint32_t validator = uint32_t(id >> 32);
		if (validator_chunks[idx_chunk][idx_element] != validator) {
			return NULL;
		}

		return &chunks[idx_chunk][idx_element];
	}

	_FORCE_INLINE_ bool owns(const RID &p_rid) {

		uint64_t id = p_rid.get_id();
		uint32_t idx = uint32_t(id & 0xFFFFFFFF);
		if (unlikely(idx >= alloc_count)) {
			return false;
		}

		uint32_t idx_chunk = idx / elements_in_chunk;
		uint32_t idx_element = idx % elements_in_chunk;

		uint32_t validator = uint32_t(id >> 32);
		return validator_chunks[idx_chunk][idx_element] == validator;
	}

	_FORCE_INLINE_ void free(const RID &p_rid) {

		uint64_t id = p_rid.get_id();
		uint32_t idx = uint32_t(id & 0xFFFFFFFF);
		if (unlikely(idx >= alloc_count)) {
			return;
		}

		uint32_t idx_chunk = idx / elements_in_chunk;
		uint32_t idx_element = idx % elements_in_chunk;

		uint32_t validator = uint32_t(id >> 32);
		if (validator_chunks[idx_chunk][idx_element] != validator) {
			return;
		}

		chunks[idx_chunk][idx_element].~T();
		validator_chunks[idx_chunk][idx_element] = 0xFFFFFFFF; // go invalid

		alloc_count--;
		free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk] = idx;
	}

	void get_owned_list(List<RID> *p_owned) {
		for (size_t i = 0; i < alloc_count; i++) {
			uint64_t idx = free_list_chunks[i / elements_in_chunk][i % elements_in_chunk];
			uint64_t validator = validator_chunks[idx / elements_in_chunk][idx % elements_in_chunk];
			p_owned->push_back(_make_from_id((validator << 32) & idx));
		}
	}

	void set_description(const char *p_descrption) {
		description = p_descrption;
	}

	RID_Alloc(uint32_t p_target_chunk_byte_size = 4096) {
		chunks = NULL;
		free_list_chunks = NULL;
		validator_chunks = NULL;

		elements_in_chunk = sizeof(T) > p_target_chunk_byte_size ? 1 : (p_target_chunk_byte_size / sizeof(T));
		max_alloc = 0;
		alloc_count = 0;
		description = NULL;
	}

	~RID_Alloc() {
		if (alloc_count) {
			if (description) {
				print_error("ERROR: " + itos(alloc_count) + " RID allocations of type " + description + " were leaked at exit.");
			} else {
				print_error("ERROR: " + itos(alloc_count) + " RID allocations of unspecified type were leaked at exit.");
			}

			for (uint32_t i = 0; i < alloc_count; i++) {
				uint64_t idx = free_list_chunks[i / elements_in_chunk][i % elements_in_chunk];
				chunks[idx / elements_in_chunk][idx % elements_in_chunk].~T();
			}
		}

		uint32_t chunk_count = alloc_count == 0 ? 0 : (max_alloc / elements_in_chunk + 1);
		for (uint32_t i = 0; i < chunk_count; i++) {
			memfree(chunks[i]);
			memfree(validator_chunks[i]);
			memfree(free_list_chunks[i]);
		}

		if (chunks) {
			memfree(chunks);
			memfree(free_list_chunks);
			memfree(validator_chunks);
		}
	}
};

template <class T>
class RID_PtrOwner {
	RID_Alloc<T *> alloc;

public:
	_FORCE_INLINE_ RID make_rid(T *p_ptr) {
		return alloc.make_rid(p_ptr);
	}

	_FORCE_INLINE_ T *getornull(const RID &p_rid) {
		T **ptr = alloc.getornull(p_rid);
		if (unlikely(!ptr)) {
			return NULL;
		}
		return *ptr;
	}

	_FORCE_INLINE_ bool owns(const RID &p_rid) {
		return alloc.owns(p_rid);
	}

	_FORCE_INLINE_ void free(const RID &p_rid) {
		alloc.free(p_rid);
	}

	_FORCE_INLINE_ void get_owned_list(List<RID> *p_owned) {
		return alloc.get_owned_list(p_owned);
	}

	void set_description(const char *p_descrption) {
		alloc.set_description(p_descrption);
	}
	RID_PtrOwner(uint32_t p_target_chunk_byte_size = 4096) :
			alloc(p_target_chunk_byte_size) {}
};

template <class T>
class RID_Owner {
	RID_Alloc<T> alloc;

public:
	_FORCE_INLINE_ RID make_rid(const T &p_ptr) {
		return alloc.make_rid(p_ptr);
	}

	_FORCE_INLINE_ T *getornull(const RID &p_rid) {
		return alloc.getornull(p_rid);
	}

	_FORCE_INLINE_ bool owns(const RID &p_rid) {
		return alloc.owns(p_rid);
	}

	_FORCE_INLINE_ void free(const RID &p_rid) {
		alloc.free(p_rid);
	}

	_FORCE_INLINE_ void get_owned_list(List<RID> *p_owned) {
		return alloc.get_owned_list(p_owned);
	}

	void set_description(const char *p_descrption) {
		alloc.set_description(p_descrption);
	}
	RID_Owner(uint32_t p_target_chunk_byte_size = 4096) :
			alloc(p_target_chunk_byte_size) {}
};
#endif // RID_OWNER_H