summaryrefslogtreecommitdiff
path: root/core/math/vector3.h
blob: adfc52566f190a30f208c90180540191d5aa6b8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/*************************************************************************/
/*  vector3.h                                                            */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#ifndef VECTOR3_H
#define VECTOR3_H

#include "core/math/math_funcs.h"
#include "core/math/vector3i.h"
#include "core/string/ustring.h"

class Basis;

struct Vector3 {
	static const int AXIS_COUNT = 3;

	enum Axis {
		AXIS_X,
		AXIS_Y,
		AXIS_Z,
	};

	union {
		struct {
			real_t x;
			real_t y;
			real_t z;
		};

		real_t coord[3] = { 0 };
	};

	_FORCE_INLINE_ const real_t &operator[](int p_axis) const {
		return coord[p_axis];
	}

	_FORCE_INLINE_ real_t &operator[](int p_axis) {
		return coord[p_axis];
	}

	void set_axis(int p_axis, real_t p_value);
	real_t get_axis(int p_axis) const;

	_FORCE_INLINE_ void set_all(real_t p_value) {
		x = y = z = p_value;
	}

	_FORCE_INLINE_ int min_axis() const {
		return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
	}

	_FORCE_INLINE_ int max_axis() const {
		return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
	}

	_FORCE_INLINE_ real_t length() const;
	_FORCE_INLINE_ real_t length_squared() const;

	_FORCE_INLINE_ void normalize();
	_FORCE_INLINE_ Vector3 normalized() const;
	_FORCE_INLINE_ bool is_normalized() const;
	_FORCE_INLINE_ Vector3 inverse() const;

	_FORCE_INLINE_ void zero();

	void snap(Vector3 p_val);
	Vector3 snapped(Vector3 p_val) const;

	void rotate(const Vector3 &p_axis, real_t p_phi);
	Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;

	/* Static Methods between 2 vector3s */

	_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, real_t p_weight) const;
	_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
	Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
	Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;

	_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
	_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
	Basis outer(const Vector3 &p_b) const;
	Basis to_diagonal_matrix() const;

	_FORCE_INLINE_ Vector3 abs() const;
	_FORCE_INLINE_ Vector3 floor() const;
	_FORCE_INLINE_ Vector3 sign() const;
	_FORCE_INLINE_ Vector3 ceil() const;
	_FORCE_INLINE_ Vector3 round() const;

	_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
	_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;

	_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
	_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
	_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;

	_FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
	_FORCE_INLINE_ real_t signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const;
	_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;

	_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
	_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
	_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;

	bool is_equal_approx(const Vector3 &p_v) const;

	/* Operators */

	_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
	_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
	_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
	_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
	_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
	_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
	_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
	_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;

	_FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar);
	_FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
	_FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar);
	_FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;

	_FORCE_INLINE_ Vector3 operator-() const;

	_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
	_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
	_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
	_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
	_FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
	_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;

	operator String() const;
	_FORCE_INLINE_ operator Vector3i() const {
		return Vector3i(x, y, z);
	}

	_FORCE_INLINE_ Vector3() {}
	_FORCE_INLINE_ Vector3(const Vector3i &p_ivec) {
		x = p_ivec.x;
		y = p_ivec.y;
		z = p_ivec.z;
	}
	_FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) {
		x = p_x;
		y = p_y;
		z = p_z;
	}
};

Vector3 Vector3::cross(const Vector3 &p_b) const {
	Vector3 ret(
			(y * p_b.z) - (z * p_b.y),
			(z * p_b.x) - (x * p_b.z),
			(x * p_b.y) - (y * p_b.x));

	return ret;
}

real_t Vector3::dot(const Vector3 &p_b) const {
	return x * p_b.x + y * p_b.y + z * p_b.z;
}

Vector3 Vector3::abs() const {
	return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
}

Vector3 Vector3::sign() const {
	return Vector3(SGN(x), SGN(y), SGN(z));
}

Vector3 Vector3::floor() const {
	return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
}

Vector3 Vector3::ceil() const {
	return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
}

Vector3 Vector3::round() const {
	return Vector3(Math::round(x), Math::round(y), Math::round(z));
}

Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const {
	return Vector3(
			x + (p_weight * (p_to.x - x)),
			y + (p_weight * (p_to.y - y)),
			z + (p_weight * (p_to.z - z)));
}

Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const {
	real_t theta = angle_to(p_to);
	return rotated(cross(p_to).normalized(), theta * p_weight);
}

real_t Vector3::distance_to(const Vector3 &p_to) const {
	return (p_to - *this).length();
}

real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
	return (p_to - *this).length_squared();
}

Vector3 Vector3::posmod(const real_t p_mod) const {
	return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
}

Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
	return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
}

Vector3 Vector3::project(const Vector3 &p_to) const {
	return p_to * (dot(p_to) / p_to.length_squared());
}

real_t Vector3::angle_to(const Vector3 &p_to) const {
	return Math::atan2(cross(p_to).length(), dot(p_to));
}

real_t Vector3::signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const {
	Vector3 cross_to = cross(p_to);
	real_t unsigned_angle = Math::atan2(cross_to.length(), dot(p_to));
	real_t sign = cross_to.dot(p_axis);
	return (sign < 0) ? -unsigned_angle : unsigned_angle;
}

Vector3 Vector3::direction_to(const Vector3 &p_to) const {
	Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
	ret.normalize();
	return ret;
}

/* Operators */

Vector3 &Vector3::operator+=(const Vector3 &p_v) {
	x += p_v.x;
	y += p_v.y;
	z += p_v.z;
	return *this;
}

Vector3 Vector3::operator+(const Vector3 &p_v) const {
	return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
}

Vector3 &Vector3::operator-=(const Vector3 &p_v) {
	x -= p_v.x;
	y -= p_v.y;
	z -= p_v.z;
	return *this;
}

Vector3 Vector3::operator-(const Vector3 &p_v) const {
	return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
}

Vector3 &Vector3::operator*=(const Vector3 &p_v) {
	x *= p_v.x;
	y *= p_v.y;
	z *= p_v.z;
	return *this;
}

Vector3 Vector3::operator*(const Vector3 &p_v) const {
	return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
}

Vector3 &Vector3::operator/=(const Vector3 &p_v) {
	x /= p_v.x;
	y /= p_v.y;
	z /= p_v.z;
	return *this;
}

Vector3 Vector3::operator/(const Vector3 &p_v) const {
	return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
}

Vector3 &Vector3::operator*=(real_t p_scalar) {
	x *= p_scalar;
	y *= p_scalar;
	z *= p_scalar;
	return *this;
}

_FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
	return p_vec * p_scalar;
}

Vector3 Vector3::operator*(real_t p_scalar) const {
	return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
}

Vector3 &Vector3::operator/=(real_t p_scalar) {
	x /= p_scalar;
	y /= p_scalar;
	z /= p_scalar;
	return *this;
}

Vector3 Vector3::operator/(real_t p_scalar) const {
	return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
}

Vector3 Vector3::operator-() const {
	return Vector3(-x, -y, -z);
}

bool Vector3::operator==(const Vector3 &p_v) const {
	return x == p_v.x && y == p_v.y && z == p_v.z;
}

bool Vector3::operator!=(const Vector3 &p_v) const {
	return x != p_v.x || y != p_v.y || z != p_v.z;
}

bool Vector3::operator<(const Vector3 &p_v) const {
	if (x == p_v.x) {
		if (y == p_v.y) {
			return z < p_v.z;
		}
		return y < p_v.y;
	}
	return x < p_v.x;
}

bool Vector3::operator>(const Vector3 &p_v) const {
	if (x == p_v.x) {
		if (y == p_v.y) {
			return z > p_v.z;
		}
		return y > p_v.y;
	}
	return x > p_v.x;
}

bool Vector3::operator<=(const Vector3 &p_v) const {
	if (x == p_v.x) {
		if (y == p_v.y) {
			return z <= p_v.z;
		}
		return y < p_v.y;
	}
	return x < p_v.x;
}

bool Vector3::operator>=(const Vector3 &p_v) const {
	if (x == p_v.x) {
		if (y == p_v.y) {
			return z >= p_v.z;
		}
		return y > p_v.y;
	}
	return x > p_v.x;
}

_FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
	return p_a.cross(p_b);
}

_FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
	return p_a.dot(p_b);
}

real_t Vector3::length() const {
	real_t x2 = x * x;
	real_t y2 = y * y;
	real_t z2 = z * z;

	return Math::sqrt(x2 + y2 + z2);
}

real_t Vector3::length_squared() const {
	real_t x2 = x * x;
	real_t y2 = y * y;
	real_t z2 = z * z;

	return x2 + y2 + z2;
}

void Vector3::normalize() {
	real_t lengthsq = length_squared();
	if (lengthsq == 0) {
		x = y = z = 0;
	} else {
		real_t length = Math::sqrt(lengthsq);
		x /= length;
		y /= length;
		z /= length;
	}
}

Vector3 Vector3::normalized() const {
	Vector3 v = *this;
	v.normalize();
	return v;
}

bool Vector3::is_normalized() const {
	// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
	return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
}

Vector3 Vector3::inverse() const {
	return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
}

void Vector3::zero() {
	x = y = z = 0;
}

// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
	return *this - p_normal * this->dot(p_normal);
}

Vector3 Vector3::bounce(const Vector3 &p_normal) const {
	return -reflect(p_normal);
}

Vector3 Vector3::reflect(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
	return 2.0 * p_normal * this->dot(p_normal) - *this;
}

#endif // VECTOR3_H