1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
/*************************************************************************/
/* vector2.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vector2.h"
real_t Vector2::angle() const {
return Math::atan2(y, x);
}
real_t Vector2::length() const {
return Math::sqrt(x * x + y * y);
}
real_t Vector2::length_squared() const {
return x * x + y * y;
}
void Vector2::normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = Math::sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
bool Vector2::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
return Math::atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
return Math::atan2(y - p_vector2.y, x - p_vector2.x);
}
real_t Vector2::dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::sign() const {
return Vector2(SGN(x), SGN(y));
}
Vector2 Vector2::floor() const {
return Vector2(Math::floor(x), Math::floor(y));
}
Vector2 Vector2::ceil() const {
return Vector2(Math::ceil(x), Math::ceil(y));
}
Vector2 Vector2::round() const {
return Vector2(Math::round(x), Math::round(y));
}
Vector2 Vector2::rotated(real_t p_by) const {
Vector2 v;
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
Vector2 Vector2::posmod(const real_t p_mod) const {
return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
}
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
}
Vector2 Vector2::project(const Vector2 &p_b) const {
return p_b * (dot(p_b) / p_b.length_squared());
}
Vector2 Vector2::snapped(const Vector2 &p_by) const {
return Vector2(
Math::stepify(x, p_by.x),
Math::stepify(y, p_by.y));
}
Vector2 Vector2::clamped(real_t p_len) const {
real_t l = length();
Vector2 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
Vector2 p2 = p_b;
Vector2 p3 = p_post_b;
real_t t = p_t;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector2 out;
out = 0.5 * ((p1 * 2.0) +
(-p0 + p2) * t +
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
return out;
}
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector2 Vector2::slide(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
return -reflect(p_normal);
}
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
}
/* Vector2i */
Vector2i Vector2i::operator+(const Vector2i &p_v) const {
return Vector2i(x + p_v.x, y + p_v.y);
}
void Vector2i::operator+=(const Vector2i &p_v) {
x += p_v.x;
y += p_v.y;
}
Vector2i Vector2i::operator-(const Vector2i &p_v) const {
return Vector2i(x - p_v.x, y - p_v.y);
}
void Vector2i::operator-=(const Vector2i &p_v) {
x -= p_v.x;
y -= p_v.y;
}
Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
return Vector2i(x * p_v1.x, y * p_v1.y);
};
Vector2i Vector2i::operator*(const int &rvalue) const {
return Vector2i(x * rvalue, y * rvalue);
};
void Vector2i::operator*=(const int &rvalue) {
x *= rvalue;
y *= rvalue;
};
Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
return Vector2i(x / p_v1.x, y / p_v1.y);
};
Vector2i Vector2i::operator/(const int &rvalue) const {
return Vector2i(x / rvalue, y / rvalue);
};
void Vector2i::operator/=(const int &rvalue) {
x /= rvalue;
y /= rvalue;
};
Vector2i Vector2i::operator-() const {
return Vector2i(-x, -y);
}
bool Vector2i::operator==(const Vector2i &p_vec2) const {
return x == p_vec2.x && y == p_vec2.y;
}
bool Vector2i::operator!=(const Vector2i &p_vec2) const {
return x != p_vec2.x || y != p_vec2.y;
}
|