summaryrefslogtreecommitdiff
path: root/core/math/transform_2d.cpp
blob: dee1b3b23ecd365422dc3f1b0f934c75946d0941 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*************************************************************************/
/*  transform_2d.cpp                                                     */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "transform_2d.h"

void Transform2D::invert() {
	// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
	// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
	SWAP(elements[0][1], elements[1][0]);
	elements[2] = basis_xform(-elements[2]);
}

Transform2D Transform2D::inverse() const {
	Transform2D inv = *this;
	inv.invert();
	return inv;
}

void Transform2D::affine_invert() {
	real_t det = basis_determinant();
#ifdef MATH_CHECKS
	ERR_FAIL_COND(det == 0);
#endif
	real_t idet = 1.0 / det;

	SWAP(elements[0][0], elements[1][1]);
	elements[0] *= Vector2(idet, -idet);
	elements[1] *= Vector2(-idet, idet);

	elements[2] = basis_xform(-elements[2]);
}

Transform2D Transform2D::affine_inverse() const {
	Transform2D inv = *this;
	inv.affine_invert();
	return inv;
}

void Transform2D::rotate(real_t p_phi) {
	*this = Transform2D(p_phi, Vector2()) * (*this);
}

real_t Transform2D::get_skew() const {
	real_t det = basis_determinant();
	return Math::acos(elements[0].normalized().dot(SGN(det) * elements[1].normalized())) - Math_PI * 0.5;
}

void Transform2D::set_skew(float p_angle) {
	real_t det = basis_determinant();
	elements[1] = SGN(det) * elements[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * elements[1].length();
}

real_t Transform2D::get_rotation() const {
	real_t det = basis_determinant();
	Transform2D m = orthonormalized();
	if (det < 0) {
		m.scale_basis(Size2(1, -1)); // convention to separate rotation and reflection for 2D is to absorb a flip along y into scaling.
	}
	return Math::atan2(m[0].y, m[0].x);
}

void Transform2D::set_rotation(real_t p_rot) {
	Size2 scale = get_scale();
	real_t cr = Math::cos(p_rot);
	real_t sr = Math::sin(p_rot);
	elements[0][0] = cr;
	elements[0][1] = sr;
	elements[1][0] = -sr;
	elements[1][1] = cr;
	set_scale(scale);
}

Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
	real_t cr = Math::cos(p_rot);
	real_t sr = Math::sin(p_rot);
	elements[0][0] = cr;
	elements[0][1] = sr;
	elements[1][0] = -sr;
	elements[1][1] = cr;
	elements[2] = p_pos;
}

Size2 Transform2D::get_scale() const {
	real_t det_sign = SGN(basis_determinant());
	return Size2(elements[0].length(), det_sign * elements[1].length());
}

void Transform2D::set_scale(const Size2 &p_scale) {
	elements[0].normalize();
	elements[1].normalize();
	elements[0] *= p_scale.x;
	elements[1] *= p_scale.y;
}

void Transform2D::scale(const Size2 &p_scale) {
	scale_basis(p_scale);
	elements[2] *= p_scale;
}

void Transform2D::scale_basis(const Size2 &p_scale) {
	elements[0][0] *= p_scale.x;
	elements[0][1] *= p_scale.y;
	elements[1][0] *= p_scale.x;
	elements[1][1] *= p_scale.y;
}

void Transform2D::translate(real_t p_tx, real_t p_ty) {
	translate(Vector2(p_tx, p_ty));
}

void Transform2D::translate(const Vector2 &p_translation) {
	elements[2] += basis_xform(p_translation);
}

void Transform2D::orthonormalize() {
	// Gram-Schmidt Process

	Vector2 x = elements[0];
	Vector2 y = elements[1];

	x.normalize();
	y = (y - x * (x.dot(y)));
	y.normalize();

	elements[0] = x;
	elements[1] = y;
}

Transform2D Transform2D::orthonormalized() const {
	Transform2D on = *this;
	on.orthonormalize();
	return on;
}

bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
	return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]);
}

bool Transform2D::operator==(const Transform2D &p_transform) const {
	for (int i = 0; i < 3; i++) {
		if (elements[i] != p_transform.elements[i]) {
			return false;
		}
	}

	return true;
}

bool Transform2D::operator!=(const Transform2D &p_transform) const {
	for (int i = 0; i < 3; i++) {
		if (elements[i] != p_transform.elements[i]) {
			return true;
		}
	}

	return false;
}

void Transform2D::operator*=(const Transform2D &p_transform) {
	elements[2] = xform(p_transform.elements[2]);

	real_t x0, x1, y0, y1;

	x0 = tdotx(p_transform.elements[0]);
	x1 = tdoty(p_transform.elements[0]);
	y0 = tdotx(p_transform.elements[1]);
	y1 = tdoty(p_transform.elements[1]);

	elements[0][0] = x0;
	elements[0][1] = x1;
	elements[1][0] = y0;
	elements[1][1] = y1;
}

Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
	Transform2D t = *this;
	t *= p_transform;
	return t;
}

Transform2D Transform2D::scaled(const Size2 &p_scale) const {
	Transform2D copy = *this;
	copy.scale(p_scale);
	return copy;
}

Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
	Transform2D copy = *this;
	copy.scale_basis(p_scale);
	return copy;
}

Transform2D Transform2D::untranslated() const {
	Transform2D copy = *this;
	copy.elements[2] = Vector2();
	return copy;
}

Transform2D Transform2D::translated(const Vector2 &p_offset) const {
	Transform2D copy = *this;
	copy.translate(p_offset);
	return copy;
}

Transform2D Transform2D::rotated(real_t p_phi) const {
	Transform2D copy = *this;
	copy.rotate(p_phi);
	return copy;
}

real_t Transform2D::basis_determinant() const {
	return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
}

Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
	//extract parameters
	Vector2 p1 = get_origin();
	Vector2 p2 = p_transform.get_origin();

	real_t r1 = get_rotation();
	real_t r2 = p_transform.get_rotation();

	Size2 s1 = get_scale();
	Size2 s2 = p_transform.get_scale();

	//slerp rotation
	Vector2 v1(Math::cos(r1), Math::sin(r1));
	Vector2 v2(Math::cos(r2), Math::sin(r2));

	real_t dot = v1.dot(v2);

	dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]

	Vector2 v;

	if (dot > 0.9995) {
		v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
	} else {
		real_t angle = p_c * Math::acos(dot);
		Vector2 v3 = (v2 - v1 * dot).normalized();
		v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
	}

	//construct matrix
	Transform2D res(Math::atan2(v.y, v.x), p1.lerp(p2, p_c));
	res.scale_basis(s1.lerp(s2, p_c));
	return res;
}

Transform2D::operator String() const {
	return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
}