summaryrefslogtreecommitdiff
path: root/core/math/transform.cpp
blob: f727d00e30d12b514c8c17357ccd5672863cf333 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*************************************************************************/
/*  transform.cpp                                                        */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md)    */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "transform.h"
#include "math_funcs.h"
#include "os/copymem.h"
#include "print_string.h"

void Transform::affine_invert() {

	basis.invert();
	origin = basis.xform(-origin);
}

Transform Transform::affine_inverse() const {

	Transform ret = *this;
	ret.affine_invert();
	return ret;
}

void Transform::invert() {

	basis.transpose();
	origin = basis.xform(-origin);
}

Transform Transform::inverse() const {
	// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
	// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
	Transform ret = *this;
	ret.invert();
	return ret;
}

void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {

	*this = rotated(p_axis, p_phi);
}

Transform Transform::rotated(const Vector3 &p_axis, real_t p_phi) const {

	return Transform(Basis(p_axis, p_phi), Vector3()) * (*this);
}

void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {

	basis.rotate(p_axis, p_phi);
}

Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {

	Transform t = *this;
	t.set_look_at(origin, p_target, p_up);
	return t;
}

void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
	ERR_FAIL_COND(p_eye == p_target);
	ERR_FAIL_COND(p_up.length() == 0);
#endif
	// Reference: MESA source code
	Vector3 v_x, v_y, v_z;

	/* Make rotation matrix */

	/* Z vector */
	v_z = p_eye - p_target;

	v_z.normalize();

	v_y = p_up;

	v_x = v_y.cross(v_z);
#ifdef MATH_CHECKS
	ERR_FAIL_COND(v_x.length() == 0);
#endif

	/* Recompute Y = Z cross X */
	v_y = v_z.cross(v_x);

	v_x.normalize();
	v_y.normalize();

	basis.set(v_x, v_y, v_z);

	origin = p_eye;
}

Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {

	/* not sure if very "efficient" but good enough? */

	Vector3 src_scale = basis.get_signed_scale();
	Quat src_rot = basis.orthonormalized();
	Vector3 src_loc = origin;

	Vector3 dst_scale = p_transform.basis.get_signed_scale();
	Quat dst_rot = p_transform.basis;
	Vector3 dst_loc = p_transform.origin;

	Transform dst; //this could be made faster by using a single function in Basis..
	dst.basis = src_rot.slerp(dst_rot, p_c).normalized();
	dst.basis.set_scale(src_scale.linear_interpolate(dst_scale, p_c));
	dst.origin = src_loc.linear_interpolate(dst_loc, p_c);

	return dst;
}

void Transform::scale(const Vector3 &p_scale) {

	basis.scale(p_scale);
	origin *= p_scale;
}

Transform Transform::scaled(const Vector3 &p_scale) const {

	Transform t = *this;
	t.scale(p_scale);
	return t;
}

void Transform::scale_basis(const Vector3 &p_scale) {

	basis.scale(p_scale);
}

void Transform::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
	translate(Vector3(p_tx, p_ty, p_tz));
}
void Transform::translate(const Vector3 &p_translation) {

	for (int i = 0; i < 3; i++) {
		origin[i] += basis[i].dot(p_translation);
	}
}

Transform Transform::translated(const Vector3 &p_translation) const {

	Transform t = *this;
	t.translate(p_translation);
	return t;
}

void Transform::orthonormalize() {

	basis.orthonormalize();
}

Transform Transform::orthonormalized() const {

	Transform _copy = *this;
	_copy.orthonormalize();
	return _copy;
}

bool Transform::operator==(const Transform &p_transform) const {

	return (basis == p_transform.basis && origin == p_transform.origin);
}
bool Transform::operator!=(const Transform &p_transform) const {

	return (basis != p_transform.basis || origin != p_transform.origin);
}

void Transform::operator*=(const Transform &p_transform) {

	origin = xform(p_transform.origin);
	basis *= p_transform.basis;
}

Transform Transform::operator*(const Transform &p_transform) const {

	Transform t = *this;
	t *= p_transform;
	return t;
}

Transform::operator String() const {

	return basis.operator String() + " - " + origin.operator String();
}

Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) :
		basis(p_basis),
		origin(p_origin) {
}