summaryrefslogtreecommitdiff
path: root/core/math/quaternion.cpp
blob: bb3b1ca63ce8535e0e0e464bbb8bbb391b8770be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*************************************************************************/
/*  quaternion.cpp                                                       */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "quaternion.h"

#include "core/math/basis.h"
#include "core/string/print_string.h"

real_t Quaternion::angle_to(const Quaternion &p_to) const {
	real_t d = dot(p_to);
	return Math::acos(CLAMP(d * d * 2 - 1, -1, 1));
}

// get_euler_xyz returns a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses XYZ convention (Z is the first rotation).
Vector3 Quaternion::get_euler_xyz() const {
	Basis m(*this);
	return m.get_euler(Basis::EULER_ORDER_XYZ);
}

// get_euler_yxz returns a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
Vector3 Quaternion::get_euler_yxz() const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
#endif
	Basis m(*this);
	return m.get_euler(Basis::EULER_ORDER_YXZ);
}

void Quaternion::operator*=(const Quaternion &p_q) {
	real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
	real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
	real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
	w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
	x = xx;
	y = yy;
	z = zz;
}

Quaternion Quaternion::operator*(const Quaternion &p_q) const {
	Quaternion r = *this;
	r *= p_q;
	return r;
}

bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {
	return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);
}

real_t Quaternion::length() const {
	return Math::sqrt(length_squared());
}

void Quaternion::normalize() {
	*this /= length();
}

Quaternion Quaternion::normalized() const {
	return *this / length();
}

bool Quaternion::is_normalized() const {
	return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
}

Quaternion Quaternion::inverse() const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");
#endif
	return Quaternion(-x, -y, -z, w);
}

Quaternion Quaternion::log() const {
	Quaternion src = *this;
	Vector3 src_v = src.get_axis() * src.get_angle();
	return Quaternion(src_v.x, src_v.y, src_v.z, 0);
}

Quaternion Quaternion::exp() const {
	Quaternion src = *this;
	Vector3 src_v = Vector3(src.x, src.y, src.z);
	real_t theta = src_v.length();
	if (theta < CMP_EPSILON) {
		return Quaternion(0, 0, 0, 1);
	}
	return Quaternion(src_v.normalized(), theta);
}

Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
	Quaternion to1;
	real_t omega, cosom, sinom, scale0, scale1;

	// calc cosine
	cosom = dot(p_to);

	// adjust signs (if necessary)
	if (cosom < 0.0f) {
		cosom = -cosom;
		to1 = -p_to;
	} else {
		to1 = p_to;
	}

	// calculate coefficients

	if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
		// standard case (slerp)
		omega = Math::acos(cosom);
		sinom = Math::sin(omega);
		scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
		scale1 = Math::sin(p_weight * omega) / sinom;
	} else {
		// "from" and "to" quaternions are very close
		//  ... so we can do a linear interpolation
		scale0 = 1.0f - p_weight;
		scale1 = p_weight;
	}
	// calculate final values
	return Quaternion(
			scale0 * x + scale1 * to1.x,
			scale0 * y + scale1 * to1.y,
			scale0 * z + scale1 * to1.z,
			scale0 * w + scale1 * to1.w);
}

Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
	const Quaternion &from = *this;

	real_t dot = from.dot(p_to);

	if (Math::absf(dot) > 0.9999f) {
		return from;
	}

	real_t theta = Math::acos(dot),
		   sinT = 1.0f / Math::sin(theta),
		   newFactor = Math::sin(p_weight * theta) * sinT,
		   invFactor = Math::sin((1.0f - p_weight) * theta) * sinT;

	return Quaternion(invFactor * from.x + newFactor * p_to.x,
			invFactor * from.y + newFactor * p_to.y,
			invFactor * from.z + newFactor * p_to.z,
			invFactor * from.w + newFactor * p_to.w);
}

Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
	Quaternion ret_q = *this;
	Quaternion pre_q = p_pre_a;
	Quaternion to_q = p_b;
	Quaternion post_q = p_post_b;

	// Align flip phases.
	ret_q = Basis(ret_q).get_rotation_quaternion();
	pre_q = Basis(pre_q).get_rotation_quaternion();
	to_q = Basis(to_q).get_rotation_quaternion();
	post_q = Basis(post_q).get_rotation_quaternion();

	// Flip quaternions to shortest path if necessary.
	bool flip1 = signbit(ret_q.dot(pre_q));
	pre_q = flip1 ? -pre_q : pre_q;
	bool flip2 = signbit(ret_q.dot(to_q));
	to_q = flip2 ? -to_q : to_q;
	bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
	post_q = flip3 ? -post_q : post_q;

	if (flip1 || flip2 || flip3) {
		// Angle is too large, calc by Approximate.
		ret_q.x = Math::cubic_interpolate(ret_q.x, to_q.x, pre_q.x, post_q.x, p_weight);
		ret_q.y = Math::cubic_interpolate(ret_q.y, to_q.y, pre_q.y, post_q.y, p_weight);
		ret_q.z = Math::cubic_interpolate(ret_q.z, to_q.z, pre_q.z, post_q.z, p_weight);
		ret_q.w = Math::cubic_interpolate(ret_q.w, to_q.w, pre_q.w, post_q.w, p_weight);
		ret_q.normalize();
	} else {
		// Calc by Expmap.
		Quaternion ln_ret = ret_q.log();
		Quaternion ln_to = to_q.log();
		Quaternion ln_pre = pre_q.log();
		Quaternion ln_post = post_q.log();
		Quaternion ln = Quaternion(0, 0, 0, 0);
		ln.x = Math::cubic_interpolate(ln_ret.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
		ln.y = Math::cubic_interpolate(ln_ret.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
		ln.z = Math::cubic_interpolate(ln_ret.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
		ret_q = ln.exp();
	}
	return ret_q;
}

Quaternion::operator String() const {
	return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";
}

Vector3 Quaternion::get_axis() const {
	if (Math::abs(w) > 1 - CMP_EPSILON) {
		return Vector3(x, y, z);
	}
	real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
	return Vector3(x * r, y * r, z * r);
}

real_t Quaternion::get_angle() const {
	return 2 * Math::acos(w);
}

Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
	real_t d = p_axis.length();
	if (d == 0) {
		x = 0;
		y = 0;
		z = 0;
		w = 0;
	} else {
		real_t sin_angle = Math::sin(p_angle * 0.5f);
		real_t cos_angle = Math::cos(p_angle * 0.5f);
		real_t s = sin_angle / d;
		x = p_axis.x * s;
		y = p_axis.y * s;
		z = p_axis.z * s;
		w = cos_angle;
	}
}

// Euler constructor expects a vector containing the Euler angles in the format
// (ax, ay, az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
Quaternion::Quaternion(const Vector3 &p_euler) {
	real_t half_a1 = p_euler.y * 0.5f;
	real_t half_a2 = p_euler.x * 0.5f;
	real_t half_a3 = p_euler.z * 0.5f;

	// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
	// a3 is the angle of the first rotation, following the notation in this reference.

	real_t cos_a1 = Math::cos(half_a1);
	real_t sin_a1 = Math::sin(half_a1);
	real_t cos_a2 = Math::cos(half_a2);
	real_t sin_a2 = Math::sin(half_a2);
	real_t cos_a3 = Math::cos(half_a3);
	real_t sin_a3 = Math::sin(half_a3);

	x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
	y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
	z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
	w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
}