summaryrefslogtreecommitdiff
path: root/core/math/quat.cpp
blob: 9662542224f5ca1b722d1b64a42aabe47767d9c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*************************************************************************/
/*  quat.cpp                                                             */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                    http://www.godotengine.org                         */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md)    */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/
#include "quat.h"
#include "matrix3.h"
#include "print_string.h"

// set_euler expects a vector containing the Euler angles in the format
// (c,b,a), where a is the angle of the first rotation, and c is the last.
// The current implementation uses XYZ convention (Z is the first rotation).
void Quat::set_euler(const Vector3 &p_euler) {
	real_t half_a1 = p_euler.x * 0.5;
	real_t half_a2 = p_euler.y * 0.5;
	real_t half_a3 = p_euler.z * 0.5;

	// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
	// a3 is the angle of the first rotation, following the notation in this reference.

	real_t cos_a1 = Math::cos(half_a1);
	real_t sin_a1 = Math::sin(half_a1);
	real_t cos_a2 = Math::cos(half_a2);
	real_t sin_a2 = Math::sin(half_a2);
	real_t cos_a3 = Math::cos(half_a3);
	real_t sin_a3 = Math::sin(half_a3);

	set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
			-sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
			sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
			-sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
}

// get_euler returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last.
// The current implementation uses XYZ convention (Z is the first rotation).
Vector3 Quat::get_euler() const {
	Basis m(*this);
	return m.get_euler();
}

void Quat::operator*=(const Quat &q) {

	set(w * q.x + x * q.w + y * q.z - z * q.y,
			w * q.y + y * q.w + z * q.x - x * q.z,
			w * q.z + z * q.w + x * q.y - y * q.x,
			w * q.w - x * q.x - y * q.y - z * q.z);
}

Quat Quat::operator*(const Quat &q) const {

	Quat r = *this;
	r *= q;
	return r;
}

real_t Quat::length() const {

	return Math::sqrt(length_squared());
}

void Quat::normalize() {
	*this /= length();
}

Quat Quat::normalized() const {
	return *this / length();
}

Quat Quat::inverse() const {
	return Quat(-x, -y, -z, w);
}

Quat Quat::slerp(const Quat &q, const real_t &t) const {

#if 0


	Quat dst=q;
	Quat src=*this;

	src.normalize();
	dst.normalize();

	real_t cosine = dst.dot(src);

	if (cosine < 0 && true) {
		cosine = -cosine;
		dst = -dst;
	} else {
		dst = dst;
	}

	if (Math::abs(cosine) < 1 - CMP_EPSILON) {
		// Standard case (slerp)
		real_t sine = Math::sqrt(1 - cosine*cosine);
		real_t angle = Math::atan2(sine, cosine);
		real_t inv_sine = 1.0 / sine;
		real_t coeff_0 = Math::sin((1.0 - t) * angle) * inv_sine;
		real_t coeff_1 = Math::sin(t * angle) * inv_sine;
		Quat ret=  src * coeff_0 + dst * coeff_1;

		return ret;
	} else {
		// There are two situations:
		// 1. "rkP" and "q" are very close (cosine ~= +1), so we can do a linear
		//    interpolation safely.
		// 2. "rkP" and "q" are almost invedste of each other (cosine ~= -1), there
		//    are an infinite number of possibilities interpolation. but we haven't
		//    have method to fix this case, so just use linear interpolation here.
		Quat ret =  src * (1.0 - t) + dst *t;
		// taking the complement requires renormalisation
		ret.normalize();
		return ret;
	}
#else

	Quat to1;
	real_t omega, cosom, sinom, scale0, scale1;

	// calc cosine
	cosom = dot(q);

	// adjust signs (if necessary)
	if (cosom < 0.0) {
		cosom = -cosom;
		to1.x = -q.x;
		to1.y = -q.y;
		to1.z = -q.z;
		to1.w = -q.w;
	} else {
		to1.x = q.x;
		to1.y = q.y;
		to1.z = q.z;
		to1.w = q.w;
	}

	// calculate coefficients

	if ((1.0 - cosom) > CMP_EPSILON) {
		// standard case (slerp)
		omega = Math::acos(cosom);
		sinom = Math::sin(omega);
		scale0 = Math::sin((1.0 - t) * omega) / sinom;
		scale1 = Math::sin(t * omega) / sinom;
	} else {
		// "from" and "to" quaternions are very close
		//  ... so we can do a linear interpolation
		scale0 = 1.0 - t;
		scale1 = t;
	}
	// calculate final values
	return Quat(
			scale0 * x + scale1 * to1.x,
			scale0 * y + scale1 * to1.y,
			scale0 * z + scale1 * to1.z,
			scale0 * w + scale1 * to1.w);
#endif
}

Quat Quat::slerpni(const Quat &q, const real_t &t) const {

	const Quat &from = *this;

	real_t dot = from.dot(q);

	if (Math::absf(dot) > 0.9999) return from;

	real_t theta = Math::acos(dot),
		   sinT = 1.0 / Math::sin(theta),
		   newFactor = Math::sin(t * theta) * sinT,
		   invFactor = Math::sin((1.0 - t) * theta) * sinT;

	return Quat(invFactor * from.x + newFactor * q.x,
			invFactor * from.y + newFactor * q.y,
			invFactor * from.z + newFactor * q.z,
			invFactor * from.w + newFactor * q.w);

#if 0
	real_t         to1[4];
	real_t        omega, cosom, sinom, scale0, scale1;


	// calc cosine
	cosom = x * q.x + y * q.y + z * q.z
			+ w * q.w;


	// adjust signs (if necessary)
	if ( cosom <0.0 && false) {
		cosom = -cosom;to1[0] = - q.x;
		to1[1] = - q.y;
		to1[2] = - q.z;
		to1[3] = - q.w;
	} else  {
		to1[0] = q.x;
		to1[1] = q.y;
		to1[2] = q.z;
		to1[3] = q.w;
	}


	// calculate coefficients

	if ( (1.0 - cosom) > CMP_EPSILON ) {
		// standard case (slerp)
		omega = Math::acos(cosom);
		sinom = Math::sin(omega);
		scale0 = Math::sin((1.0 - t) * omega) / sinom;
		scale1 = Math::sin(t * omega) / sinom;
	} else {
		// "from" and "to" quaternions are very close
		//  ... so we can do a linear interpolation
		scale0 = 1.0 - t;
		scale1 = t;
	}
	// calculate final values
	return Quat(
		scale0 * x + scale1 * to1[0],
		scale0 * y + scale1 * to1[1],
		scale0 * z + scale1 * to1[2],
		scale0 * w + scale1 * to1[3]
	);
#endif
}

Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const {

	//the only way to do slerp :|
	real_t t2 = (1.0 - t) * t * 2;
	Quat sp = this->slerp(q, t);
	Quat sq = prep.slerpni(postq, t);
	return sp.slerpni(sq, t2);
}

Quat::operator String() const {

	return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
}

Quat::Quat(const Vector3 &axis, const real_t &angle) {
	real_t d = axis.length();
	if (d == 0)
		set(0, 0, 0, 0);
	else {
		real_t sin_angle = Math::sin(angle * 0.5);
		real_t cos_angle = Math::cos(angle * 0.5);
		real_t s = sin_angle / d;
		set(axis.x * s, axis.y * s, axis.z * s,
				cos_angle);
	}
}