1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*************************************************************************/
/* matrix3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "matrix3.h"
#include "math_funcs.h"
#include "os/copymem.h"
#define cofac(row1,col1, row2, col2)\
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
void Matrix3::from_z(const Vector3& p_z) {
if (Math::abs(p_z.z) > Math_SQRT12 ) {
// choose p in y-z plane
real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2];
real_t k = 1.0/Math::sqrt(a);
elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k);
elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]);
} else {
// choose p in x-y plane
real_t a = p_z.x*p_z.x + p_z.y*p_z.y;
real_t k = 1.0/Math::sqrt(a);
elements[0]=Vector3(-p_z.y*k,p_z.x*k,0);
elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k);
}
elements[2]=p_z;
}
void Matrix3::invert() {
real_t co[3]={
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = elements[0][0] * co[0]+
elements[0][1] * co[1]+
elements[0][2] * co[2];
ERR_FAIL_COND( det == 0 );
real_t s = 1.0/det;
set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
}
void Matrix3::orthonormalize() {
// Gram-Schmidt Process
Vector3 x=get_axis(0);
Vector3 y=get_axis(1);
Vector3 z=get_axis(2);
x.normalize();
y = (y-x*(x.dot(y)));
y.normalize();
z = (z-x*(x.dot(z))-y*(y.dot(z)));
z.normalize();
set_axis(0,x);
set_axis(1,y);
set_axis(2,z);
}
Matrix3 Matrix3::orthonormalized() const {
Matrix3 c = *this;
c.orthonormalize();
return c;
}
Matrix3 Matrix3::inverse() const {
Matrix3 inv=*this;
inv.invert();
return inv;
}
void Matrix3::transpose() {
SWAP(elements[0][1],elements[1][0]);
SWAP(elements[0][2],elements[2][0]);
SWAP(elements[1][2],elements[2][1]);
}
Matrix3 Matrix3::transposed() const {
Matrix3 tr=*this;
tr.transpose();
return tr;
}
void Matrix3::scale(const Vector3& p_scale) {
elements[0][0]*=p_scale.x;
elements[1][0]*=p_scale.x;
elements[2][0]*=p_scale.x;
elements[0][1]*=p_scale.y;
elements[1][1]*=p_scale.y;
elements[2][1]*=p_scale.y;
elements[0][2]*=p_scale.z;
elements[1][2]*=p_scale.z;
elements[2][2]*=p_scale.z;
}
Matrix3 Matrix3::scaled( const Vector3& p_scale ) const {
Matrix3 m = *this;
m.scale(p_scale);
return m;
}
Vector3 Matrix3::get_scale() const {
return Vector3(
Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
);
}
void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) {
*this = *this * Matrix3(p_axis, p_phi);
}
Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const {
return *this * Matrix3(p_axis, p_phi);
}
Vector3 Matrix3::get_euler() const {
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Matrix3 m = *this;
m.orthonormalize();
Vector3 euler;
euler.y = Math::asin(m[0][2]);
if ( euler.y < Math_PI*0.5) {
if ( euler.y > -Math_PI*0.5) {
euler.x = Math::atan2(-m[1][2],m[2][2]);
euler.z = Math::atan2(-m[0][1],m[0][0]);
} else {
real_t r = Math::atan2(m[1][0],m[1][1]);
euler.z = 0.0;
euler.x = euler.z - r;
}
} else {
real_t r = Math::atan2(m[0][1],m[1][1]);
euler.z = 0;
euler.x = r - euler.z;
}
return euler;
}
void Matrix3::set_euler(const Vector3& p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Matrix3 xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Matrix3 ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Matrix3 zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
//optimizer will optimize away all this anyway
*this = xmat*(ymat*zmat);
}
bool Matrix3::operator==(const Matrix3& p_matrix) const {
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if (elements[i][j]!=p_matrix.elements[i][j])
return false;
}
}
return true;
}
bool Matrix3::operator!=(const Matrix3& p_matrix) const {
return (!(*this==p_matrix));
}
Matrix3::operator String() const {
String mtx;
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if (i!=0 || j!=0)
mtx+=", ";
mtx+=rtos( elements[i][j] );
}
}
return mtx;
}
Matrix3::operator Quat() const {
Matrix3 m=*this;
m.orthonormalize();
real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
real_t temp[4];
if (trace > 0.0)
{
real_t s = Math::sqrt(trace + 1.0);
temp[3]=(s * 0.5);
s = 0.5 / s;
temp[0]=((m.elements[2][1] - m.elements[1][2]) * s);
temp[1]=((m.elements[0][2] - m.elements[2][0]) * s);
temp[2]=((m.elements[1][0] - m.elements[0][1]) * s);
}
else
{
int i = m.elements[0][0] < m.elements[1][1] ?
(m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
(m.elements[0][0] < m.elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0);
temp[i] = s * 0.5;
s = 0.5 / s;
temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
}
return Quat(temp[0],temp[1],temp[2],temp[3]);
}
static const Matrix3 _ortho_bases[24]={
Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1),
Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1),
Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1),
Matrix3(0, 1, 0, -1, 0, 0, 0, 0, 1),
Matrix3(1, 0, 0, 0, 0, -1, 0, 1, 0),
Matrix3(0, 0, 1, 1, 0, 0, 0, 1, 0),
Matrix3(-1, 0, 0, 0, 0, 1, 0, 1, 0),
Matrix3(0, 0, -1, -1, 0, 0, 0, 1, 0),
Matrix3(1, 0, 0, 0, -1, 0, 0, 0, -1),
Matrix3(0, 1, 0, 1, 0, 0, 0, 0, -1),
Matrix3(-1, 0, 0, 0, 1, 0, 0, 0, -1),
Matrix3(0, -1, 0, -1, 0, 0, 0, 0, -1),
Matrix3(1, 0, 0, 0, 0, 1, 0, -1, 0),
Matrix3(0, 0, -1, 1, 0, 0, 0, -1, 0),
Matrix3(-1, 0, 0, 0, 0, -1, 0, -1, 0),
Matrix3(0, 0, 1, -1, 0, 0, 0, -1, 0),
Matrix3(0, 0, 1, 0, 1, 0, -1, 0, 0),
Matrix3(0, -1, 0, 0, 0, 1, -1, 0, 0),
Matrix3(0, 0, -1, 0, -1, 0, -1, 0, 0),
Matrix3(0, 1, 0, 0, 0, -1, -1, 0, 0),
Matrix3(0, 0, 1, 0, -1, 0, 1, 0, 0),
Matrix3(0, 1, 0, 0, 0, 1, 1, 0, 0),
Matrix3(0, 0, -1, 0, 1, 0, 1, 0, 0),
Matrix3(0, -1, 0, 0, 0, -1, 1, 0, 0)
};
int Matrix3::get_orthogonal_index() const {
//could be sped up if i come up with a way
Matrix3 orth=*this;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
float v = orth[i][j];
if (v>0.5)
v=1.0;
else if (v<-0.5)
v=-1.0;
else
v=0;
orth[i][j]=v;
}
}
for(int i=0;i<24;i++) {
if (_ortho_bases[i]==orth)
return i;
}
return 0;
}
void Matrix3::set_orthogonal_index(int p_index){
//there only exist 24 orthogonal bases in r3
ERR_FAIL_INDEX(p_index,24);
*this=_ortho_bases[p_index];
}
void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
double angle,x,y,z; // variables for result
double epsilon = 0.01; // margin to allow for rounding errors
double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon)
&& (Math::abs(elements[2][0]-elements[0][2])< epsilon)
&& (Math::abs(elements[2][1]-elements[1][2])< epsilon)) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonaland zero in other terms
if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2)
&& (Math::abs(elements[2][0]+elements[0][2]) < epsilon2)
&& (Math::abs(elements[2][1]+elements[1][2]) < epsilon2)
&& (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) {
// this singularity is identity matrix so angle = 0
r_axis=Vector3(0,1,0);
r_angle=0;
return;
}
// otherwise this singularity is angle = 180
angle = Math_PI;
double xx = (elements[0][0]+1)/2;
double yy = (elements[1][1]+1)/2;
double zz = (elements[2][2]+1)/2;
double xy = (elements[1][0]+elements[0][1])/4;
double xz = (elements[2][0]+elements[0][2])/4;
double yz = (elements[2][1]+elements[1][2])/4;
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
if (xx< epsilon) {
x = 0;
y = 0.7071;
z = 0.7071;
} else {
x = Math::sqrt(xx);
y = xy/x;
z = xz/x;
}
} else if (yy > zz) { // elements[1][1] is the largest diagonal term
if (yy< epsilon) {
x = 0.7071;
y = 0;
z = 0.7071;
} else {
y = Math::sqrt(yy);
x = xy/y;
z = yz/y;
}
} else { // elements[2][2] is the largest diagonal term so base result on this
if (zz< epsilon) {
x = 0.7071;
y = 0.7071;
z = 0;
} else {
z = Math::sqrt(zz);
x = xz/z;
y = yz/z;
}
}
r_axis=Vector3(x,y,z);
r_angle=angle;
return;
}
// as we have reached here there are no singularities so we can handle normally
double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1])
+(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2])
+(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // used to normalise
if (Math::abs(s) < 0.001) s=1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2);
x = (elements[1][2] - elements[2][1])/s;
y = (elements[2][0] - elements[0][2])/s;
z = (elements[0][1] - elements[1][0])/s;
r_axis=Vector3(x,y,z);
r_angle=angle;
}
Matrix3::Matrix3(const Vector3& p_euler) {
set_euler( p_euler );
}
Matrix3::Matrix3(const Quat& p_quat) {
real_t d = p_quat.length_squared();
real_t s = 2.0 / d;
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
set( 1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy)) ;
}
Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) {
Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
real_t cosine= Math::cos(p_phi);
real_t sine= Math::sin(p_phi);
elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
}
|