summaryrefslogtreecommitdiff
path: root/core/math/geometry_2d.h
blob: 4fdb8ee36a7c913236c4cd09664235eebe04b2b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*************************************************************************/
/*  geometry_2d.h                                                        */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#ifndef GEOMETRY_2D_H
#define GEOMETRY_2D_H

#include "core/math/delaunay_2d.h"
#include "core/math/math_funcs.h"
#include "core/math/triangulate.h"
#include "core/math/vector2.h"
#include "core/math/vector2i.h"
#include "core/math/vector3.h"
#include "core/math/vector3i.h"
#include "core/templates/vector.h"

class Geometry2D {
public:
	static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
		Vector2 d1 = q1 - p1; // Direction vector of segment S1.
		Vector2 d2 = q2 - p2; // Direction vector of segment S2.
		Vector2 r = p1 - p2;
		real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative.
		real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative.
		real_t f = d2.dot(r);
		real_t s, t;
		// Check if either or both segments degenerate into points.
		if (a <= CMP_EPSILON && e <= CMP_EPSILON) {
			// Both segments degenerate into points.
			c1 = p1;
			c2 = p2;
			return Math::sqrt((c1 - c2).dot(c1 - c2));
		}
		if (a <= CMP_EPSILON) {
			// First segment degenerates into a point.
			s = 0.0;
			t = f / e; // s = 0 => t = (b*s + f) / e = f / e
			t = CLAMP(t, 0.0f, 1.0f);
		} else {
			real_t c = d1.dot(r);
			if (e <= CMP_EPSILON) {
				// Second segment degenerates into a point.
				t = 0.0;
				s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
			} else {
				// The general nondegenerate case starts here.
				real_t b = d1.dot(d2);
				real_t denom = a * e - b * b; // Always nonnegative.
				// If segments not parallel, compute closest point on L1 to L2 and
				// clamp to segment S1. Else pick arbitrary s (here 0).
				if (denom != 0.0f) {
					s = CLAMP((b * f - c * e) / denom, 0.0f, 1.0f);
				} else {
					s = 0.0;
				}
				// Compute point on L2 closest to S1(s) using
				// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
				t = (b * s + f) / e;

				//If t in [0,1] done. Else clamp t, recompute s for the new value
				// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
				// and clamp s to [0, 1].
				if (t < 0.0f) {
					t = 0.0;
					s = CLAMP(-c / a, 0.0f, 1.0f);
				} else if (t > 1.0f) {
					t = 1.0;
					s = CLAMP((b - c) / a, 0.0f, 1.0f);
				}
			}
		}
		c1 = p1 + d1 * s;
		c2 = p2 + d2 * t;
		return Math::sqrt((c1 - c2).dot(c1 - c2));
	}

	static Vector2 get_closest_point_to_segment(const Vector2 &p_point, const Vector2 *p_segment) {
		Vector2 p = p_point - p_segment[0];
		Vector2 n = p_segment[1] - p_segment[0];
		real_t l2 = n.length_squared();
		if (l2 < 1e-20f) {
			return p_segment[0]; // Both points are the same, just give any.
		}

		real_t d = n.dot(p) / l2;

		if (d <= 0.0f) {
			return p_segment[0]; // Before first point.
		} else if (d >= 1.0f) {
			return p_segment[1]; // After first point.
		} else {
			return p_segment[0] + n * d; // Inside.
		}
	}

	static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
		Vector2 an = a - s;
		Vector2 bn = b - s;
		Vector2 cn = c - s;

		bool orientation = an.cross(bn) > 0;

		if ((bn.cross(cn) > 0) != orientation) {
			return false;
		}

		return (cn.cross(an) > 0) == orientation;
	}

	static Vector2 get_closest_point_to_segment_uncapped(const Vector2 &p_point, const Vector2 *p_segment) {
		Vector2 p = p_point - p_segment[0];
		Vector2 n = p_segment[1] - p_segment[0];
		real_t l2 = n.length_squared();
		if (l2 < 1e-20f) {
			return p_segment[0]; // Both points are the same, just give any.
		}

		real_t d = n.dot(p) / l2;

		return p_segment[0] + n * d; // Inside.
	}

// Disable False Positives in MSVC compiler; we correctly check for 0 here to prevent a division by 0.
// See: https://github.com/godotengine/godot/pull/44274
#ifdef _MSC_VER
#pragma warning(disable : 4723)
#endif

	static bool line_intersects_line(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) {
		// See http://paulbourke.net/geometry/pointlineplane/

		const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y;
		if (Math::is_zero_approx(denom)) { // Parallel?
			return false;
		}

		const Vector2 v = p_from_a - p_from_b;
		const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom;
		r_result = p_from_a + t * p_dir_a;
		return true;
	}

// Re-enable division by 0 warning
#ifdef _MSC_VER
#pragma warning(default : 4723)
#endif

	static bool segment_intersects_segment(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) {
		Vector2 B = p_to_a - p_from_a;
		Vector2 C = p_from_b - p_from_a;
		Vector2 D = p_to_b - p_from_a;

		real_t ABlen = B.dot(B);
		if (ABlen <= 0) {
			return false;
		}
		Vector2 Bn = B / ABlen;
		C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y);
		D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);

		// Fail if C x B and D x B have the same sign (segments don't intersect).
		if ((C.y < -CMP_EPSILON && D.y < -CMP_EPSILON) || (C.y > CMP_EPSILON && D.y > CMP_EPSILON)) {
			return false;
		}

		// Fail if segments are parallel or colinear.
		// (when A x B == zero, i.e (C - D) x B == zero, i.e C x B == D x B)
		if (Math::is_equal_approx(C.y, D.y)) {
			return false;
		}

		real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);

		// Fail if segment C-D crosses line A-B outside of segment A-B.
		if (ABpos < 0 || ABpos > 1.0f) {
			return false;
		}

		// Apply the discovered position to line A-B in the original coordinate system.
		if (r_result) {
			*r_result = p_from_a + B * ABpos;
		}

		return true;
	}

	static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) {
		return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius;
	}

	static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) {
		Vector2 line_vec = p_to - p_from;
		Vector2 vec_to_line = p_from - p_circle_pos;

		// Create a quadratic formula of the form ax^2 + bx + c = 0
		real_t a, b, c;

		a = line_vec.dot(line_vec);
		b = 2 * vec_to_line.dot(line_vec);
		c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius;

		// Solve for t.
		real_t sqrtterm = b * b - 4 * a * c;

		// If the term we intend to square root is less than 0 then the answer won't be real,
		// so it definitely won't be t in the range 0 to 1.
		if (sqrtterm < 0) {
			return -1;
		}

		// If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection)
		// then the following can be skipped and we can just return the equivalent of res1.
		sqrtterm = Math::sqrt(sqrtterm);
		real_t res1 = (-b - sqrtterm) / (2 * a);
		real_t res2 = (-b + sqrtterm) / (2 * a);

		if (res1 >= 0 && res1 <= 1) {
			return res1;
		}
		if (res2 >= 0 && res2 <= 1) {
			return res2;
		}
		return -1;
	}

	enum PolyBooleanOperation {
		OPERATION_UNION,
		OPERATION_DIFFERENCE,
		OPERATION_INTERSECTION,
		OPERATION_XOR
	};
	enum PolyJoinType {
		JOIN_SQUARE,
		JOIN_ROUND,
		JOIN_MITER
	};
	enum PolyEndType {
		END_POLYGON,
		END_JOINED,
		END_BUTT,
		END_SQUARE,
		END_ROUND
	};

	static Vector<Vector<Point2>> merge_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> clip_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> intersect_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> exclude_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> clip_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
		return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
	}

	static Vector<Vector<Point2>> intersect_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
		return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
	}

	static Vector<Vector<Point2>> offset_polygon(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
		return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
	}

	static Vector<Vector<Point2>> offset_polyline(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
		ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon instead).");

		return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
	}

	static Vector<int> triangulate_delaunay(const Vector<Vector2> &p_points) {
		Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
		Vector<int> triangles;

		for (int i = 0; i < tr.size(); i++) {
			triangles.push_back(tr[i].points[0]);
			triangles.push_back(tr[i].points[1]);
			triangles.push_back(tr[i].points[2]);
		}
		return triangles;
	}

	static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
		Vector<int> triangles;
		if (!Triangulate::triangulate(p_polygon, triangles)) {
			return Vector<int>(); //fail
		}
		return triangles;
	}

	static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
		int c = p_polygon.size();
		if (c < 3) {
			return false;
		}
		const Vector2 *p = p_polygon.ptr();
		real_t sum = 0;
		for (int i = 0; i < c; i++) {
			const Vector2 &v1 = p[i];
			const Vector2 &v2 = p[(i + 1) % c];
			sum += (v2.x - v1.x) * (v2.y + v1.y);
		}

		return sum > 0.0f;
	}

	// Alternate implementation that should be faster.
	static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
		int c = p_polygon.size();
		if (c < 3) {
			return false;
		}
		const Vector2 *p = p_polygon.ptr();
		Vector2 further_away(-1e20, -1e20);
		Vector2 further_away_opposite(1e20, 1e20);

		for (int i = 0; i < c; i++) {
			further_away.x = MAX(p[i].x, further_away.x);
			further_away.y = MAX(p[i].y, further_away.y);
			further_away_opposite.x = MIN(p[i].x, further_away_opposite.x);
			further_away_opposite.y = MIN(p[i].y, further_away_opposite.y);
		}

		// Make point outside that won't intersect with points in segment from p_point.
		further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312);

		int intersections = 0;
		for (int i = 0; i < c; i++) {
			const Vector2 &v1 = p[i];
			const Vector2 &v2 = p[(i + 1) % c];

			Vector2 res;
			if (segment_intersects_segment(v1, v2, p_point, further_away, &res)) {
				intersections++;
				if (res.is_equal_approx(p_point)) {
					// Point is in one of the polygon edges.
					return true;
				}
			}
		}

		return (intersections & 1);
	}

	static bool is_segment_intersecting_polygon(const Vector2 &p_from, const Vector2 &p_to, const Vector<Vector2> &p_polygon) {
		int c = p_polygon.size();
		const Vector2 *p = p_polygon.ptr();
		for (int i = 0; i < c; i++) {
			const Vector2 &v1 = p[i];
			const Vector2 &v2 = p[(i + 1) % c];
			if (segment_intersects_segment(p_from, p_to, v1, v2, nullptr)) {
				return true;
			}
		}
		return false;
	}

	static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) {
		return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x);
	}

	// Returns a list of points on the convex hull in counter-clockwise order.
	// Note: the last point in the returned list is the same as the first one.
	static Vector<Point2> convex_hull(Vector<Point2> P) {
		int n = P.size(), k = 0;
		Vector<Point2> H;
		H.resize(2 * n);

		// Sort points lexicographically.
		P.sort();

		// Build lower hull.
		for (int i = 0; i < n; ++i) {
			while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
				k--;
			}
			H.write[k++] = P[i];
		}

		// Build upper hull.
		for (int i = n - 2, t = k + 1; i >= 0; i--) {
			while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
				k--;
			}
			H.write[k++] = P[i];
		}

		H.resize(k);
		return H;
	}

	static Vector<Point2i> bresenham_line(const Point2i &p_start, const Point2i &p_end) {
		Vector<Point2i> points;

		Vector2i delta = (p_end - p_start).abs() * 2;
		Vector2i step = (p_end - p_start).sign();
		Vector2i current = p_start;

		if (delta.x > delta.y) {
			int err = delta.x / 2;

			for (; current.x != p_end.x; current.x += step.x) {
				points.push_back(current);

				err -= delta.y;
				if (err < 0) {
					current.y += step.y;
					err += delta.x;
				}
			}
		} else {
			int err = delta.y / 2;

			for (; current.y != p_end.y; current.y += step.y) {
				points.push_back(current);

				err -= delta.x;
				if (err < 0) {
					current.x += step.x;
					err += delta.y;
				}
			}
		}

		points.push_back(current);

		return points;
	}

	static Vector<Vector<Vector2>> decompose_polygon_in_convex(Vector<Point2> polygon);

	static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);
	static Vector<Point2i> pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size);
	static Vector<Vector3i> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);

private:
	static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
	static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
};

#endif // GEOMETRY_2D_H