1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
|
/*************************************************************************/
/* geometry.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "geometry.h"
#include "core/print_string.h"
#include "thirdparty/misc/clipper.hpp"
#include "thirdparty/misc/triangulator.h"
#define STB_RECT_PACK_IMPLEMENTATION
#include "thirdparty/stb_rect_pack/stb_rect_pack.h"
#define SCALE_FACTOR 100000.0 // Based on CMP_EPSILON.
// This implementation is very inefficient, commenting unless bugs happen. See the other one.
/*
bool Geometry::is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
Vector<int> indices = Geometry::triangulate_polygon(p_polygon);
for (int j = 0; j + 3 <= indices.size(); j += 3) {
int i1 = indices[j], i2 = indices[j + 1], i3 = indices[j + 2];
if (Geometry::is_point_in_triangle(p_point, p_polygon[i1], p_polygon[i2], p_polygon[i3]))
return true;
}
return false;
}
*/
void Geometry::MeshData::optimize_vertices() {
Map<int, int> vtx_remap;
for (int i = 0; i < faces.size(); i++) {
for (int j = 0; j < faces[i].indices.size(); j++) {
int idx = faces[i].indices[j];
if (!vtx_remap.has(idx)) {
int ni = vtx_remap.size();
vtx_remap[idx] = ni;
}
faces.write[i].indices.write[j] = vtx_remap[idx];
}
}
for (int i = 0; i < edges.size(); i++) {
int a = edges[i].a;
int b = edges[i].b;
if (!vtx_remap.has(a)) {
int ni = vtx_remap.size();
vtx_remap[a] = ni;
}
if (!vtx_remap.has(b)) {
int ni = vtx_remap.size();
vtx_remap[b] = ni;
}
edges.write[i].a = vtx_remap[a];
edges.write[i].b = vtx_remap[b];
}
Vector<Vector3> new_vertices;
new_vertices.resize(vtx_remap.size());
for (int i = 0; i < vertices.size(); i++) {
if (vtx_remap.has(i))
new_vertices.write[vtx_remap[i]] = vertices[i];
}
vertices = new_vertices;
}
struct _FaceClassify {
struct _Link {
int face;
int edge;
void clear() {
face = -1;
edge = -1;
}
_Link() {
face = -1;
edge = -1;
}
};
bool valid;
int group;
_Link links[3];
Face3 face;
_FaceClassify() {
group = -1;
valid = false;
};
};
static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) {
// Connect faces, error will occur if an edge is shared between more than 2 faces.
// Clear connections.
bool error = false;
for (int i = 0; i < len; i++) {
for (int j = 0; j < 3; j++) {
p_faces[i].links[j].clear();
}
}
for (int i = 0; i < len; i++) {
if (p_faces[i].group != p_group)
continue;
for (int j = i + 1; j < len; j++) {
if (p_faces[j].group != p_group)
continue;
for (int k = 0; k < 3; k++) {
Vector3 vi1 = p_faces[i].face.vertex[k];
Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3];
for (int l = 0; l < 3; l++) {
Vector3 vj2 = p_faces[j].face.vertex[l];
Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3];
if (vi1.distance_to(vj1) < 0.00001 &&
vi2.distance_to(vj2) < 0.00001) {
if (p_faces[i].links[k].face != -1) {
ERR_PRINT("already linked\n");
error = true;
break;
}
if (p_faces[j].links[l].face != -1) {
ERR_PRINT("already linked\n");
error = true;
break;
}
p_faces[i].links[k].face = j;
p_faces[i].links[k].edge = l;
p_faces[j].links[l].face = i;
p_faces[j].links[l].edge = k;
}
}
if (error)
break;
}
if (error)
break;
}
if (error)
break;
}
for (int i = 0; i < len; i++) {
p_faces[i].valid = true;
for (int j = 0; j < 3; j++) {
if (p_faces[i].links[j].face == -1)
p_faces[i].valid = false;
}
}
return error;
}
static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) {
if (p_faces[p_index].group >= 0)
return false;
p_faces[p_index].group = p_group;
for (int i = 0; i < 3; i++) {
ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true);
_group_face(p_faces, len, p_faces[p_index].links[i].face, p_group);
}
return true;
}
Vector<Vector<Face3>> Geometry::separate_objects(Vector<Face3> p_array) {
Vector<Vector<Face3>> objects;
int len = p_array.size();
const Face3 *arrayptr = p_array.ptr();
Vector<_FaceClassify> fc;
fc.resize(len);
_FaceClassify *_fcptr = fc.ptrw();
for (int i = 0; i < len; i++) {
_fcptr[i].face = arrayptr[i];
}
bool error = _connect_faces(_fcptr, len, -1);
ERR_FAIL_COND_V_MSG(error, Vector<Vector<Face3>>(), "Invalid geometry.");
// Group connected faces in separate objects.
int group = 0;
for (int i = 0; i < len; i++) {
if (!_fcptr[i].valid)
continue;
if (_group_face(_fcptr, len, i, group)) {
group++;
}
}
// Group connected faces in separate objects.
for (int i = 0; i < len; i++) {
_fcptr[i].face = arrayptr[i];
}
if (group >= 0) {
objects.resize(group);
Vector<Face3> *group_faces = objects.ptrw();
for (int i = 0; i < len; i++) {
if (!_fcptr[i].valid)
continue;
if (_fcptr[i].group >= 0 && _fcptr[i].group < group) {
group_faces[_fcptr[i].group].push_back(_fcptr[i].face);
}
}
}
return objects;
}
/*** GEOMETRY WRAPPER ***/
enum _CellFlags {
_CELL_SOLID = 1,
_CELL_EXTERIOR = 2,
_CELL_STEP_MASK = 0x1C,
_CELL_STEP_NONE = 0 << 2,
_CELL_STEP_Y_POS = 1 << 2,
_CELL_STEP_Y_NEG = 2 << 2,
_CELL_STEP_X_POS = 3 << 2,
_CELL_STEP_X_NEG = 4 << 2,
_CELL_STEP_Z_POS = 5 << 2,
_CELL_STEP_Z_NEG = 6 << 2,
_CELL_STEP_DONE = 7 << 2,
_CELL_PREV_MASK = 0xE0,
_CELL_PREV_NONE = 0 << 5,
_CELL_PREV_Y_POS = 1 << 5,
_CELL_PREV_Y_NEG = 2 << 5,
_CELL_PREV_X_POS = 3 << 5,
_CELL_PREV_X_NEG = 4 << 5,
_CELL_PREV_Z_POS = 5 << 5,
_CELL_PREV_Z_NEG = 6 << 5,
_CELL_PREV_FIRST = 7 << 5,
};
static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
aabb.position = aabb.position * voxelsize;
aabb.size = aabb.size * voxelsize;
if (!p_face.intersects_aabb(aabb))
return;
if (len_x == 1 && len_y == 1 && len_z == 1) {
p_cell_status[x][y][z] = _CELL_SOLID;
return;
}
int div_x = len_x > 1 ? 2 : 1;
int div_y = len_y > 1 ? 2 : 1;
int div_z = len_z > 1 ? 2 : 1;
#define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
if (m_div == 1) { \
m_new_v = m_v; \
m_new_len_v = 1; \
} else if (m_i == 0) { \
m_new_v = m_v; \
m_new_len_v = m_len_v / 2; \
} else { \
m_new_v = m_v + m_len_v / 2; \
m_new_len_v = m_len_v - m_len_v / 2; \
}
int new_x;
int new_len_x;
int new_y;
int new_len_y;
int new_z;
int new_len_z;
for (int i = 0; i < div_x; i++) {
_SPLIT(i, div_x, x, len_x, new_x, new_len_x);
for (int j = 0; j < div_y; j++) {
_SPLIT(j, div_y, y, len_y, new_y, new_len_y);
for (int k = 0; k < div_z; k++) {
_SPLIT(k, div_z, z, len_z, new_z, new_len_z);
_plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
}
}
}
}
static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
if (p_cell_status[x][y][z] & 3)
return; // Nothing to do, already used and/or visited.
p_cell_status[x][y][z] = _CELL_PREV_FIRST;
while (true) {
uint8_t &c = p_cell_status[x][y][z];
if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
// Haven't been in here, mark as outside.
p_cell_status[x][y][z] |= _CELL_EXTERIOR;
}
if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
// If not done, increase step.
c += 1 << 2;
}
if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
// Go back.
switch (c & _CELL_PREV_MASK) {
case _CELL_PREV_FIRST: {
return;
} break;
case _CELL_PREV_Y_POS: {
y++;
ERR_FAIL_COND(y >= len_y);
} break;
case _CELL_PREV_Y_NEG: {
y--;
ERR_FAIL_COND(y < 0);
} break;
case _CELL_PREV_X_POS: {
x++;
ERR_FAIL_COND(x >= len_x);
} break;
case _CELL_PREV_X_NEG: {
x--;
ERR_FAIL_COND(x < 0);
} break;
case _CELL_PREV_Z_POS: {
z++;
ERR_FAIL_COND(z >= len_z);
} break;
case _CELL_PREV_Z_NEG: {
z--;
ERR_FAIL_COND(z < 0);
} break;
default: {
ERR_FAIL();
}
}
continue;
}
int next_x = x, next_y = y, next_z = z;
uint8_t prev = 0;
switch (c & _CELL_STEP_MASK) {
case _CELL_STEP_Y_POS: {
next_y++;
prev = _CELL_PREV_Y_NEG;
} break;
case _CELL_STEP_Y_NEG: {
next_y--;
prev = _CELL_PREV_Y_POS;
} break;
case _CELL_STEP_X_POS: {
next_x++;
prev = _CELL_PREV_X_NEG;
} break;
case _CELL_STEP_X_NEG: {
next_x--;
prev = _CELL_PREV_X_POS;
} break;
case _CELL_STEP_Z_POS: {
next_z++;
prev = _CELL_PREV_Z_NEG;
} break;
case _CELL_STEP_Z_NEG: {
next_z--;
prev = _CELL_PREV_Z_POS;
} break;
default:
ERR_FAIL();
}
if (next_x < 0 || next_x >= len_x)
continue;
if (next_y < 0 || next_y >= len_y)
continue;
if (next_z < 0 || next_z >= len_z)
continue;
if (p_cell_status[next_x][next_y][next_z] & 3)
continue;
x = next_x;
y = next_y;
z = next_z;
p_cell_status[x][y][z] |= prev;
}
}
static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, Vector<Face3> &p_faces) {
ERR_FAIL_INDEX(x, len_x);
ERR_FAIL_INDEX(y, len_y);
ERR_FAIL_INDEX(z, len_z);
if (p_cell_status[x][y][z] & _CELL_EXTERIOR)
return;
#define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1)
static const uint8_t indices[6][4] = {
{ 7, 6, 4, 5 },
{ 7, 3, 2, 6 },
{ 7, 5, 1, 3 },
{ 0, 2, 3, 1 },
{ 0, 1, 5, 4 },
{ 0, 4, 6, 2 },
};
for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
bool plot = false;
if (disp_x < 0 || disp_x >= len_x)
plot = true;
if (disp_y < 0 || disp_y >= len_y)
plot = true;
if (disp_z < 0 || disp_z >= len_z)
plot = true;
if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR))
plot = true;
if (!plot)
continue;
for (int j = 0; j < 4; j++)
face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
p_faces.push_back(
Face3(
face_points[0],
face_points[1],
face_points[2]));
p_faces.push_back(
Face3(
face_points[2],
face_points[3],
face_points[0]));
}
}
Vector<Face3> Geometry::wrap_geometry(Vector<Face3> p_array, real_t *p_error) {
#define _MIN_SIZE 1.0
#define _MAX_LENGTH 20
int face_count = p_array.size();
const Face3 *faces = p_array.ptr();
AABB global_aabb;
for (int i = 0; i < face_count; i++) {
if (i == 0) {
global_aabb = faces[i].get_aabb();
} else {
global_aabb.merge_with(faces[i].get_aabb());
}
}
global_aabb.grow_by(0.01); // Avoid numerical error.
// Determine amount of cells in grid axis.
int div_x, div_y, div_z;
if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH)
div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1;
else
div_x = _MAX_LENGTH;
if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH)
div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1;
else
div_y = _MAX_LENGTH;
if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH)
div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1;
else
div_z = _MAX_LENGTH;
Vector3 voxelsize = global_aabb.size;
voxelsize.x /= div_x;
voxelsize.y /= div_y;
voxelsize.z /= div_z;
// Create and initialize cells to zero.
uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
for (int i = 0; i < div_x; i++) {
cell_status[i] = memnew_arr(uint8_t *, div_y);
for (int j = 0; j < div_y; j++) {
cell_status[i][j] = memnew_arr(uint8_t, div_z);
for (int k = 0; k < div_z; k++) {
cell_status[i][j][k] = 0;
}
}
}
// Plot faces into cells.
for (int i = 0; i < face_count; i++) {
Face3 f = faces[i];
for (int j = 0; j < 3; j++) {
f.vertex[j] -= global_aabb.position;
}
_plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
}
// Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_y; j++) {
_mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
_mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
}
}
for (int i = 0; i < div_z; i++) {
for (int j = 0; j < div_y; j++) {
_mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
_mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
}
}
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_z; j++) {
_mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
_mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
}
}
// Build faces for the inside-outside cell divisors.
Vector<Face3> wrapped_faces;
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_y; j++) {
for (int k = 0; k < div_z; k++) {
_build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
}
}
}
// Transform face vertices to global coords.
int wrapped_faces_count = wrapped_faces.size();
Face3 *wrapped_faces_ptr = wrapped_faces.ptrw();
for (int i = 0; i < wrapped_faces_count; i++) {
for (int j = 0; j < 3; j++) {
Vector3 &v = wrapped_faces_ptr[i].vertex[j];
v = v * voxelsize;
v += global_aabb.position;
}
}
// clean up grid
for (int i = 0; i < div_x; i++) {
for (int j = 0; j < div_y; j++) {
memdelete_arr(cell_status[i][j]);
}
memdelete_arr(cell_status[i]);
}
memdelete_arr(cell_status);
if (p_error)
*p_error = voxelsize.length();
return wrapped_faces;
}
Vector<Vector<Vector2>> Geometry::decompose_polygon_in_convex(Vector<Point2> polygon) {
Vector<Vector<Vector2>> decomp;
List<TriangulatorPoly> in_poly, out_poly;
TriangulatorPoly inp;
inp.Init(polygon.size());
for (int i = 0; i < polygon.size(); i++) {
inp.GetPoint(i) = polygon[i];
}
inp.SetOrientation(TRIANGULATOR_CCW);
in_poly.push_back(inp);
TriangulatorPartition tpart;
if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed.
ERR_PRINT("Convex decomposing failed!");
return decomp;
}
decomp.resize(out_poly.size());
int idx = 0;
for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
TriangulatorPoly &tp = I->get();
decomp.write[idx].resize(tp.GetNumPoints());
for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
decomp.write[idx].write[i] = tp.GetPoint(i);
}
idx++;
}
return decomp;
}
Geometry::MeshData Geometry::build_convex_mesh(const Vector<Plane> &p_planes) {
MeshData mesh;
#define SUBPLANE_SIZE 1024.0
real_t subplane_size = 1024.0; // Should compute this from the actual plane.
for (int i = 0; i < p_planes.size(); i++) {
Plane p = p_planes[i];
Vector3 ref = Vector3(0.0, 1.0, 0.0);
if (ABS(p.normal.dot(ref)) > 0.95)
ref = Vector3(0.0, 0.0, 1.0); // Change axis.
Vector3 right = p.normal.cross(ref).normalized();
Vector3 up = p.normal.cross(right).normalized();
Vector<Vector3> vertices;
Vector3 center = p.get_any_point();
// make a quad clockwise
vertices.push_back(center - up * subplane_size + right * subplane_size);
vertices.push_back(center - up * subplane_size - right * subplane_size);
vertices.push_back(center + up * subplane_size - right * subplane_size);
vertices.push_back(center + up * subplane_size + right * subplane_size);
for (int j = 0; j < p_planes.size(); j++) {
if (j == i)
continue;
Vector<Vector3> new_vertices;
Plane clip = p_planes[j];
if (clip.normal.dot(p.normal) > 0.95)
continue;
if (vertices.size() < 3)
break;
for (int k = 0; k < vertices.size(); k++) {
int k_n = (k + 1) % vertices.size();
Vector3 edge0_A = vertices[k];
Vector3 edge1_A = vertices[k_n];
real_t dist0 = clip.distance_to(edge0_A);
real_t dist1 = clip.distance_to(edge1_A);
if (dist0 <= 0) { // Behind plane.
new_vertices.push_back(vertices[k]);
}
// Check for different sides and non coplanar.
if ((dist0 * dist1) < 0) {
// Calculate intersection.
Vector3 rel = edge1_A - edge0_A;
real_t den = clip.normal.dot(rel);
if (Math::is_zero_approx(den))
continue; // Point too short.
real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
Vector3 inters = edge0_A + rel * dist;
new_vertices.push_back(inters);
}
}
vertices = new_vertices;
}
if (vertices.size() < 3)
continue;
// Result is a clockwise face.
MeshData::Face face;
// Add face indices.
for (int j = 0; j < vertices.size(); j++) {
int idx = -1;
for (int k = 0; k < mesh.vertices.size(); k++) {
if (mesh.vertices[k].distance_to(vertices[j]) < 0.001) {
idx = k;
break;
}
}
if (idx == -1) {
idx = mesh.vertices.size();
mesh.vertices.push_back(vertices[j]);
}
face.indices.push_back(idx);
}
face.plane = p;
mesh.faces.push_back(face);
// Add edge.
for (int j = 0; j < face.indices.size(); j++) {
int a = face.indices[j];
int b = face.indices[(j + 1) % face.indices.size()];
bool found = false;
for (int k = 0; k < mesh.edges.size(); k++) {
if (mesh.edges[k].a == a && mesh.edges[k].b == b) {
found = true;
break;
}
if (mesh.edges[k].b == a && mesh.edges[k].a == b) {
found = true;
break;
}
}
if (found)
continue;
MeshData::Edge edge;
edge.a = a;
edge.b = b;
mesh.edges.push_back(edge);
}
}
return mesh;
}
Vector<Plane> Geometry::build_box_planes(const Vector3 &p_extents) {
Vector<Plane> planes;
planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x));
planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x));
planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y));
planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y));
planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z));
planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z));
return planes;
}
Vector<Plane> Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
Vector<Plane> planes;
for (int i = 0; i < p_sides; i++) {
Vector3 normal;
normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
planes.push_back(Plane(normal, p_radius));
}
Vector3 axis;
axis[p_axis] = 1.0;
planes.push_back(Plane(axis, p_height * 0.5));
planes.push_back(Plane(-axis, p_height * 0.5));
return planes;
}
Vector<Plane> Geometry::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
Vector<Plane> planes;
Vector3 axis;
axis[p_axis] = 1.0;
Vector3 axis_neg;
axis_neg[(p_axis + 1) % 3] = 1.0;
axis_neg[(p_axis + 2) % 3] = 1.0;
axis_neg[p_axis] = -1.0;
for (int i = 0; i < p_lons; i++) {
Vector3 normal;
normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_lons);
normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_lons);
planes.push_back(Plane(normal, p_radius));
for (int j = 1; j <= p_lats; j++) {
// FIXME: This is stupid.
Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized();
Vector3 pos = angle * p_radius;
planes.push_back(Plane(pos, angle));
planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
}
}
return planes;
}
Vector<Plane> Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
Vector<Plane> planes;
Vector3 axis;
axis[p_axis] = 1.0;
Vector3 axis_neg;
axis_neg[(p_axis + 1) % 3] = 1.0;
axis_neg[(p_axis + 2) % 3] = 1.0;
axis_neg[p_axis] = -1.0;
for (int i = 0; i < p_sides; i++) {
Vector3 normal;
normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
planes.push_back(Plane(normal, p_radius));
for (int j = 1; j <= p_lats; j++) {
Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized();
Vector3 pos = axis * p_height * 0.5 + angle * p_radius;
planes.push_back(Plane(pos, angle));
planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
}
}
return planes;
}
struct _AtlasWorkRect {
Size2i s;
Point2i p;
int idx;
_FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
};
struct _AtlasWorkRectResult {
Vector<_AtlasWorkRect> result;
int max_w;
int max_h;
};
void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
// Super simple, almost brute force scanline stacking fitter.
// It's pretty basic for now, but it tries to make sure that the aspect ratio of the
// resulting atlas is somehow square. This is necessary because video cards have limits.
// On texture size (usually 2048 or 4096), so the more square a texture, the more chances.
// It will work in every hardware.
// For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
// 256x8192 atlas (won't work anywhere).
ERR_FAIL_COND(p_rects.size() == 0);
Vector<_AtlasWorkRect> wrects;
wrects.resize(p_rects.size());
for (int i = 0; i < p_rects.size(); i++) {
wrects.write[i].s = p_rects[i];
wrects.write[i].idx = i;
}
wrects.sort();
int widest = wrects[0].s.width;
Vector<_AtlasWorkRectResult> results;
for (int i = 0; i <= 12; i++) {
int w = 1 << i;
int max_h = 0;
int max_w = 0;
if (w < widest)
continue;
Vector<int> hmax;
hmax.resize(w);
for (int j = 0; j < w; j++)
hmax.write[j] = 0;
// Place them.
int ofs = 0;
int limit_h = 0;
for (int j = 0; j < wrects.size(); j++) {
if (ofs + wrects[j].s.width > w) {
ofs = 0;
}
int from_y = 0;
for (int k = 0; k < wrects[j].s.width; k++) {
if (hmax[ofs + k] > from_y)
from_y = hmax[ofs + k];
}
wrects.write[j].p.x = ofs;
wrects.write[j].p.y = from_y;
int end_h = from_y + wrects[j].s.height;
int end_w = ofs + wrects[j].s.width;
if (ofs == 0)
limit_h = end_h;
for (int k = 0; k < wrects[j].s.width; k++) {
hmax.write[ofs + k] = end_h;
}
if (end_h > max_h)
max_h = end_h;
if (end_w > max_w)
max_w = end_w;
if (ofs == 0 || end_h > limit_h) // While h limit not reached, keep stacking.
ofs += wrects[j].s.width;
}
_AtlasWorkRectResult result;
result.result = wrects;
result.max_h = max_h;
result.max_w = max_w;
results.push_back(result);
}
// Find the result with the best aspect ratio.
int best = -1;
real_t best_aspect = 1e20;
for (int i = 0; i < results.size(); i++) {
real_t h = next_power_of_2(results[i].max_h);
real_t w = next_power_of_2(results[i].max_w);
real_t aspect = h > w ? h / w : w / h;
if (aspect < best_aspect) {
best = i;
best_aspect = aspect;
}
}
r_result.resize(p_rects.size());
for (int i = 0; i < p_rects.size(); i++) {
r_result.write[results[best].result[i].idx] = results[best].result[i].p;
}
r_size = Size2(results[best].max_w, results[best].max_h);
}
Vector<Vector<Point2>> Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
using namespace ClipperLib;
ClipType op = ctUnion;
switch (p_op) {
case OPERATION_UNION:
op = ctUnion;
break;
case OPERATION_DIFFERENCE:
op = ctDifference;
break;
case OPERATION_INTERSECTION:
op = ctIntersection;
break;
case OPERATION_XOR:
op = ctXor;
break;
}
Path path_a, path_b;
// Need to scale points (Clipper's requirement for robust computation).
for (int i = 0; i != p_polypath_a.size(); ++i) {
path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
}
for (int i = 0; i != p_polypath_b.size(); ++i) {
path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
}
Clipper clp;
clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
clp.AddPath(path_b, ptClip, true); // Polylines cannot be set as clip.
Paths paths;
if (is_a_open) {
PolyTree tree; // Needed to populate polylines.
clp.Execute(op, tree);
OpenPathsFromPolyTree(tree, paths);
} else {
clp.Execute(op, paths); // Works on closed polygons only.
}
// Have to scale points down now.
Vector<Vector<Point2>> polypaths;
for (Paths::size_type i = 0; i < paths.size(); ++i) {
Vector<Vector2> polypath;
const Path &scaled_path = paths[i];
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
polypath.push_back(Point2(
static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
}
polypaths.push_back(polypath);
}
return polypaths;
}
Vector<Vector<Point2>> Geometry::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
using namespace ClipperLib;
JoinType jt = jtSquare;
switch (p_join_type) {
case JOIN_SQUARE:
jt = jtSquare;
break;
case JOIN_ROUND:
jt = jtRound;
break;
case JOIN_MITER:
jt = jtMiter;
break;
}
EndType et = etClosedPolygon;
switch (p_end_type) {
case END_POLYGON:
et = etClosedPolygon;
break;
case END_JOINED:
et = etClosedLine;
break;
case END_BUTT:
et = etOpenButt;
break;
case END_SQUARE:
et = etOpenSquare;
break;
case END_ROUND:
et = etOpenRound;
break;
}
ClipperOffset co(2.0, 0.25 * SCALE_FACTOR); // Defaults from ClipperOffset.
Path path;
// Need to scale points (Clipper's requirement for robust computation).
for (int i = 0; i != p_polypath.size(); ++i) {
path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
}
co.AddPath(path, jt, et);
Paths paths;
co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
// Have to scale points down now.
Vector<Vector<Point2>> polypaths;
for (Paths::size_type i = 0; i < paths.size(); ++i) {
Vector<Vector2> polypath;
const Path &scaled_path = paths[i];
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
polypath.push_back(Point2(
static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
}
polypaths.push_back(polypath);
}
return polypaths;
}
Vector<Vector3> Geometry::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) {
Vector<Vector3> points;
// Iterate through every unique combination of any three planes.
for (int i = p_plane_count - 1; i >= 0; i--) {
for (int j = i - 1; j >= 0; j--) {
for (int k = j - 1; k >= 0; k--) {
// Find the point where these planes all cross over (if they
// do at all).
Vector3 convex_shape_point;
if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) {
// See if any *other* plane excludes this point because it's
// on the wrong side.
bool excluded = false;
for (int n = 0; n < p_plane_count; n++) {
if (n != i && n != j && n != k) {
real_t dp = p_planes[n].normal.dot(convex_shape_point);
if (dp - p_planes[n].d > CMP_EPSILON) {
excluded = true;
break;
}
}
}
// Only add the point if it passed all tests.
if (!excluded) {
points.push_back(convex_shape_point);
}
}
}
}
}
return points;
}
Vector<Point2i> Geometry::pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size) {
Vector<stbrp_node> nodes;
nodes.resize(p_atlas_size.width);
stbrp_context context;
stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
Vector<stbrp_rect> rects;
rects.resize(p_sizes.size());
for (int i = 0; i < p_sizes.size(); i++) {
rects.write[i].id = 0;
rects.write[i].w = p_sizes[i].width;
rects.write[i].h = p_sizes[i].height;
rects.write[i].x = 0;
rects.write[i].y = 0;
rects.write[i].was_packed = 0;
}
int res = stbrp_pack_rects(&context, rects.ptrw(), rects.size());
if (res == 0) { //pack failed
return Vector<Point2i>();
}
Vector<Point2i> ret;
ret.resize(p_sizes.size());
for (int i = 0; i < p_sizes.size(); i++) {
Point2i r(rects[i].x, rects[i].y);
ret.write[i] = r;
}
return ret;
}
Vector<Vector3i> Geometry::partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size) {
Vector<stbrp_node> nodes;
nodes.resize(p_atlas_size.width);
zeromem(nodes.ptrw(), sizeof(stbrp_node) * nodes.size());
stbrp_context context;
stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
Vector<stbrp_rect> rects;
rects.resize(p_sizes.size());
for (int i = 0; i < p_sizes.size(); i++) {
rects.write[i].id = i;
rects.write[i].w = p_sizes[i].width;
rects.write[i].h = p_sizes[i].height;
rects.write[i].x = 0;
rects.write[i].y = 0;
rects.write[i].was_packed = 0;
}
stbrp_pack_rects(&context, rects.ptrw(), rects.size());
Vector<Vector3i> ret;
ret.resize(p_sizes.size());
for (int i = 0; i < p_sizes.size(); i++) {
ret.write[rects[i].id] = Vector3i(rects[i].x, rects[i].y, rects[i].was_packed != 0 ? 1 : 0);
}
return ret;
}
#define square(m_s) ((m_s) * (m_s))
#define INF 1e20
/* dt of 1d function using squared distance */
static void edt(float *f, int stride, int n) {
float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
int *v = (int *)&(d[n]);
float *z = (float *)&v[n];
int k = 0;
v[0] = 0;
z[0] = -INF;
z[1] = +INF;
for (int q = 1; q <= n - 1; q++) {
float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
while (s <= z[k]) {
k--;
s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
}
k++;
v[k] = q;
z[k] = s;
z[k + 1] = +INF;
}
k = 0;
for (int q = 0; q <= n - 1; q++) {
while (z[k + 1] < q)
k++;
d[q] = square(q - v[k]) + f[v[k] * stride];
}
for (int i = 0; i < n; i++) {
f[i * stride] = d[i];
}
}
#undef square
Vector<uint32_t> Geometry::generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative) {
uint32_t float_count = p_size.x * p_size.y * p_size.z;
ERR_FAIL_COND_V((uint32_t)p_voxels.size() != float_count, Vector<uint32_t>());
float *work_memory = memnew_arr(float, float_count);
for (uint32_t i = 0; i < float_count; i++) {
work_memory[i] = INF;
}
uint32_t y_mult = p_size.x;
uint32_t z_mult = y_mult * p_size.y;
//plot solid cells
{
const bool *voxr = p_voxels.ptr();
for (uint32_t i = 0; i < float_count; i++) {
bool plot = voxr[i];
if (p_negative) {
plot = !plot;
}
if (plot) {
work_memory[i] = 0;
}
}
}
//process in each direction
//xy->z
for (int i = 0; i < p_size.x; i++) {
for (int j = 0; j < p_size.y; j++) {
edt(&work_memory[i + j * y_mult], z_mult, p_size.z);
}
}
//xz->y
for (int i = 0; i < p_size.x; i++) {
for (int j = 0; j < p_size.z; j++) {
edt(&work_memory[i + j * z_mult], y_mult, p_size.y);
}
}
//yz->x
for (int i = 0; i < p_size.y; i++) {
for (int j = 0; j < p_size.z; j++) {
edt(&work_memory[i * y_mult + j * z_mult], 1, p_size.x);
}
}
Vector<uint32_t> ret;
ret.resize(float_count);
{
uint32_t *w = ret.ptrw();
for (uint32_t i = 0; i < float_count; i++) {
w[i] = uint32_t(Math::sqrt(work_memory[i]));
}
}
return ret;
}
Vector<int8_t> Geometry::generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative) {
ERR_FAIL_COND_V(p_positive.size() != p_negative.size(), Vector<int8_t>());
Vector<int8_t> sdf8;
int s = p_positive.size();
sdf8.resize(s);
const uint32_t *rpos = p_positive.ptr();
const uint32_t *rneg = p_negative.ptr();
int8_t *wsdf = sdf8.ptrw();
for (int i = 0; i < s; i++) {
int32_t diff = int32_t(rpos[i]) - int32_t(rneg[i]);
wsdf[i] = CLAMP(diff, -128, 127);
}
return sdf8;
}
|