1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
/**************************************************************************/
/* bvh_abb.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef BVH_ABB_H
#define BVH_ABB_H
// special optimized version of axis aligned bounding box
template <class BOUNDS = AABB, class POINT = Vector3>
struct BVH_ABB {
struct ConvexHull {
// convex hulls (optional)
const Plane *planes;
int num_planes;
const Vector3 *points;
int num_points;
};
struct Segment {
POINT from;
POINT to;
};
enum IntersectResult {
IR_MISS = 0,
IR_PARTIAL,
IR_FULL,
};
// we store mins with a negative value in order to test them with SIMD
POINT min;
POINT neg_max;
bool operator==(const BVH_ABB &o) const { return (min == o.min) && (neg_max == o.neg_max); }
bool operator!=(const BVH_ABB &o) const { return (*this == o) == false; }
void set(const POINT &_min, const POINT &_max) {
min = _min;
neg_max = -_max;
}
// to and from standard AABB
void from(const BOUNDS &p_aabb) {
min = p_aabb.position;
neg_max = -(p_aabb.position + p_aabb.size);
}
void to(BOUNDS &r_aabb) const {
r_aabb.position = min;
r_aabb.size = calculate_size();
}
void merge(const BVH_ABB &p_o) {
for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
neg_max[axis] = MIN(neg_max[axis], p_o.neg_max[axis]);
min[axis] = MIN(min[axis], p_o.min[axis]);
}
}
POINT calculate_size() const {
return -neg_max - min;
}
POINT calculate_centre() const {
return POINT((calculate_size() * 0.5) + min);
}
real_t get_proximity_to(const BVH_ABB &p_b) const {
const POINT d = (min - neg_max) - (p_b.min - p_b.neg_max);
real_t proximity = 0.0;
for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
proximity += Math::abs(d[axis]);
}
return proximity;
}
int select_by_proximity(const BVH_ABB &p_a, const BVH_ABB &p_b) const {
return (get_proximity_to(p_a) < get_proximity_to(p_b) ? 0 : 1);
}
uint32_t find_cutting_planes(const typename BVH_ABB::ConvexHull &p_hull, uint32_t *p_plane_ids) const {
uint32_t count = 0;
for (int n = 0; n < p_hull.num_planes; n++) {
const Plane &p = p_hull.planes[n];
if (intersects_plane(p)) {
p_plane_ids[count++] = n;
}
}
return count;
}
bool intersects_plane(const Plane &p_p) const {
Vector3 size = calculate_size();
Vector3 half_extents = size * 0.5;
Vector3 ofs = min + half_extents;
// forward side of plane?
Vector3 point_offset(
(p_p.normal.x < 0) ? -half_extents.x : half_extents.x,
(p_p.normal.y < 0) ? -half_extents.y : half_extents.y,
(p_p.normal.z < 0) ? -half_extents.z : half_extents.z);
Vector3 point = point_offset + ofs;
if (!p_p.is_point_over(point)) {
return false;
}
point = -point_offset + ofs;
if (p_p.is_point_over(point)) {
return false;
}
return true;
}
bool intersects_convex_optimized(const ConvexHull &p_hull, const uint32_t *p_plane_ids, uint32_t p_num_planes) const {
Vector3 size = calculate_size();
Vector3 half_extents = size * 0.5;
Vector3 ofs = min + half_extents;
for (unsigned int i = 0; i < p_num_planes; i++) {
const Plane &p = p_hull.planes[p_plane_ids[i]];
Vector3 point(
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return false;
}
}
return true;
}
bool intersects_convex_partial(const ConvexHull &p_hull) const {
BOUNDS bb;
to(bb);
return bb.intersects_convex_shape(p_hull.planes, p_hull.num_planes, p_hull.points, p_hull.num_points);
}
IntersectResult intersects_convex(const ConvexHull &p_hull) const {
if (intersects_convex_partial(p_hull)) {
// fully within? very important for tree checks
if (is_within_convex(p_hull)) {
return IR_FULL;
}
return IR_PARTIAL;
}
return IR_MISS;
}
bool is_within_convex(const ConvexHull &p_hull) const {
// use half extents routine
BOUNDS bb;
to(bb);
return bb.inside_convex_shape(p_hull.planes, p_hull.num_planes);
}
bool is_point_within_hull(const ConvexHull &p_hull, const Vector3 &p_pt) const {
for (int n = 0; n < p_hull.num_planes; n++) {
if (p_hull.planes[n].distance_to(p_pt) > 0.0f) {
return false;
}
}
return true;
}
bool intersects_segment(const Segment &p_s) const {
BOUNDS bb;
to(bb);
return bb.intersects_segment(p_s.from, p_s.to);
}
bool intersects_point(const POINT &p_pt) const {
if (_any_lessthan(-p_pt, neg_max)) {
return false;
}
if (_any_lessthan(p_pt, min)) {
return false;
}
return true;
}
// Very hot in profiling, make sure optimized
bool intersects(const BVH_ABB &p_o) const {
if (_any_morethan(p_o.min, -neg_max)) {
return false;
}
if (_any_morethan(min, -p_o.neg_max)) {
return false;
}
return true;
}
// for pre-swizzled tester (this object)
bool intersects_swizzled(const BVH_ABB &p_o) const {
if (_any_lessthan(min, p_o.min)) {
return false;
}
if (_any_lessthan(neg_max, p_o.neg_max)) {
return false;
}
return true;
}
bool is_other_within(const BVH_ABB &p_o) const {
if (_any_lessthan(p_o.neg_max, neg_max)) {
return false;
}
if (_any_lessthan(p_o.min, min)) {
return false;
}
return true;
}
void grow(const POINT &p_change) {
neg_max -= p_change;
min -= p_change;
}
void expand(real_t p_change) {
POINT change;
for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
change[axis] = p_change;
}
grow(change);
}
// Actually surface area metric.
float get_area() const {
POINT d = calculate_size();
return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x);
}
void set_to_max_opposite_extents() {
for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
neg_max[axis] = FLT_MAX;
}
min = neg_max;
}
bool _any_morethan(const POINT &p_a, const POINT &p_b) const {
for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
if (p_a[axis] > p_b[axis]) {
return true;
}
}
return false;
}
bool _any_lessthan(const POINT &p_a, const POINT &p_b) const {
for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
if (p_a[axis] < p_b[axis]) {
return true;
}
}
return false;
}
};
#endif // BVH_ABB_H
|