summaryrefslogtreecommitdiff
path: root/core/math/basis.cpp
blob: 87abf2dbc1857a07d0f1cd698c6b41de2034b11c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/*************************************************************************/
/*  basis.cpp                                                            */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "basis.h"

#include "core/math/math_funcs.h"
#include "core/os/copymem.h"
#include "core/print_string.h"

#define cofac(row1, col1, row2, col2) \
	(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])

void Basis::from_z(const Vector3 &p_z) {

	if (Math::abs(p_z.z) > Math_SQRT12) {

		// choose p in y-z plane
		real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
		real_t k = 1.0 / Math::sqrt(a);
		elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
		elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
	} else {

		// choose p in x-y plane
		real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
		real_t k = 1.0 / Math::sqrt(a);
		elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
		elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
	}
	elements[2] = p_z;
}

void Basis::invert() {

	real_t co[3] = {
		cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
	};
	real_t det = elements[0][0] * co[0] +
				 elements[0][1] * co[1] +
				 elements[0][2] * co[2];
#ifdef MATH_CHECKS
	ERR_FAIL_COND(det == 0);
#endif
	real_t s = 1.0 / det;

	set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
			co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
			co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}

void Basis::orthonormalize() {

	// Gram-Schmidt Process

	Vector3 x = get_axis(0);
	Vector3 y = get_axis(1);
	Vector3 z = get_axis(2);

	x.normalize();
	y = (y - x * (x.dot(y)));
	y.normalize();
	z = (z - x * (x.dot(z)) - y * (y.dot(z)));
	z.normalize();

	set_axis(0, x);
	set_axis(1, y);
	set_axis(2, z);
}

Basis Basis::orthonormalized() const {

	Basis c = *this;
	c.orthonormalize();
	return c;
}

bool Basis::is_orthogonal() const {
	Basis identity;
	Basis m = (*this) * transposed();

	return m.is_equal_approx(identity);
}

bool Basis::is_diagonal() const {
	return (
			Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) &&
			Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) &&
			Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1]));
}

bool Basis::is_rotation() const {
	return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal();
}

bool Basis::is_symmetric() const {

	if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON))
		return false;
	if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON))
		return false;
	if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON))
		return false;

	return true;
}

Basis Basis::diagonalize() {

//NOTE: only implemented for symmetric matrices
//with the Jacobi iterative method method
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
	const int ite_max = 1024;

	real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];

	int ite = 0;
	Basis acc_rot;
	while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
		real_t el01_2 = elements[0][1] * elements[0][1];
		real_t el02_2 = elements[0][2] * elements[0][2];
		real_t el12_2 = elements[1][2] * elements[1][2];
		// Find the pivot element
		int i, j;
		if (el01_2 > el02_2) {
			if (el12_2 > el01_2) {
				i = 1;
				j = 2;
			} else {
				i = 0;
				j = 1;
			}
		} else {
			if (el12_2 > el02_2) {
				i = 1;
				j = 2;
			} else {
				i = 0;
				j = 2;
			}
		}

		// Compute the rotation angle
		real_t angle;
		if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
			angle = Math_PI / 4;
		} else {
			angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
		}

		// Compute the rotation matrix
		Basis rot;
		rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
		rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));

		// Update the off matrix norm
		off_matrix_norm_2 -= elements[i][j] * elements[i][j];

		// Apply the rotation
		*this = rot * *this * rot.transposed();
		acc_rot = rot * acc_rot;
	}

	return acc_rot;
}

Basis Basis::inverse() const {

	Basis inv = *this;
	inv.invert();
	return inv;
}

void Basis::transpose() {

	SWAP(elements[0][1], elements[1][0]);
	SWAP(elements[0][2], elements[2][0]);
	SWAP(elements[1][2], elements[2][1]);
}

Basis Basis::transposed() const {

	Basis tr = *this;
	tr.transpose();
	return tr;
}

// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {

	elements[0][0] *= p_scale.x;
	elements[0][1] *= p_scale.x;
	elements[0][2] *= p_scale.x;
	elements[1][0] *= p_scale.y;
	elements[1][1] *= p_scale.y;
	elements[1][2] *= p_scale.y;
	elements[2][0] *= p_scale.z;
	elements[2][1] *= p_scale.z;
	elements[2][2] *= p_scale.z;
}

Basis Basis::scaled(const Vector3 &p_scale) const {
	Basis m = *this;
	m.scale(p_scale);
	return m;
}

void Basis::scale_local(const Vector3 &p_scale) {
	// performs a scaling in object-local coordinate system:
	// M -> (M.S.Minv).M = M.S.
	*this = scaled_local(p_scale);
}

float Basis::get_uniform_scale() const {
	return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0;
}

void Basis::make_scale_uniform() {
	float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0;
	for (int i = 0; i < 3; i++) {
		elements[i].normalize();
		elements[i] *= l;
	}
}

Basis Basis::scaled_local(const Vector3 &p_scale) const {
	Basis b;
	b.set_diagonal(p_scale);

	return (*this) * b;
}

Vector3 Basis::get_scale_abs() const {

	return Vector3(
			Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
			Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
			Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}

Vector3 Basis::get_scale_local() const {
	real_t det_sign = SGN(determinant());
	return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length());
}

// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
Vector3 Basis::get_scale() const {
	// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
	// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
	// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
	//
	// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
	// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
	// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
	// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
	// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
	// Therefore, we are going to do this decomposition by sticking to a particular convention.
	// This may lead to confusion for some users though.
	//
	// The convention we use here is to absorb the sign flip into the scaling matrix.
	// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
	//
	// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
	// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
	// matrix elements.
	//
	// The rotation part of this decomposition is returned by get_rotation* functions.
	real_t det_sign = SGN(determinant());
	return det_sign * Vector3(
							  Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
							  Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
							  Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}

// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(determinant() == 0, Vector3());

	Basis m = transposed() * (*this);
	ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
#endif
	Vector3 scale = get_scale();
	Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
	rotref = (*this) * inv_scale;

#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
#endif
	return scale.abs();
}

// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
// The main use of Basis is as Transform.basis, which is used a the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
	return Basis(p_axis, p_phi) * (*this);
}

void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
	*this = rotated(p_axis, p_phi);
}

void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) {
	// performs a rotation in object-local coordinate system:
	// M -> (M.R.Minv).M = M.R.
	*this = rotated_local(p_axis, p_phi);
}
Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const {

	return (*this) * Basis(p_axis, p_phi);
}

Basis Basis::rotated(const Vector3 &p_euler) const {
	return Basis(p_euler) * (*this);
}

void Basis::rotate(const Vector3 &p_euler) {
	*this = rotated(p_euler);
}

Basis Basis::rotated(const Quat &p_quat) const {
	return Basis(p_quat) * (*this);
}

void Basis::rotate(const Quat &p_quat) {
	*this = rotated(p_quat);
}

Vector3 Basis::get_rotation_euler() const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = orthonormalized();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	return m.get_euler();
}

Quat Basis::get_rotation_quat() const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = orthonormalized();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	return m.get_quat();
}

void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = orthonormalized();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	m.get_axis_angle(p_axis, p_angle);
}

void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = transposed();
	m.orthonormalize();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	m.get_axis_angle(p_axis, p_angle);
	p_angle = -p_angle;
}

// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
//
// The current implementation uses XYZ convention (Z is the first rotation),
// so euler.z is the angle of the (first) rotation around Z axis and so on,
//
// And thus, assuming the matrix is a rotation matrix, this function returns
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
// around the z-axis by a and so on.
Vector3 Basis::get_euler_xyz() const {

	// Euler angles in XYZ convention.
	// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
	//
	// rot =  cy*cz          -cy*sz           sy
	//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
	//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy

	Vector3 euler;
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(!is_rotation(), euler);
#endif
	real_t sy = elements[0][2];
	if (sy < 1.0) {
		if (sy > -1.0) {
			// is this a pure Y rotation?
			if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
				// return the simplest form (human friendlier in editor and scripts)
				euler.x = 0;
				euler.y = atan2(elements[0][2], elements[0][0]);
				euler.z = 0;
			} else {
				euler.x = Math::atan2(-elements[1][2], elements[2][2]);
				euler.y = Math::asin(sy);
				euler.z = Math::atan2(-elements[0][1], elements[0][0]);
			}
		} else {
			euler.x = -Math::atan2(elements[0][1], elements[1][1]);
			euler.y = -Math_PI / 2.0;
			euler.z = 0.0;
		}
	} else {
		euler.x = Math::atan2(elements[0][1], elements[1][1]);
		euler.y = Math_PI / 2.0;
		euler.z = 0.0;
	}
	return euler;
}

// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses XYZ convention (Z is the first rotation).
void Basis::set_euler_xyz(const Vector3 &p_euler) {

	real_t c, s;

	c = Math::cos(p_euler.x);
	s = Math::sin(p_euler.x);
	Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);

	c = Math::cos(p_euler.y);
	s = Math::sin(p_euler.y);
	Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);

	c = Math::cos(p_euler.z);
	s = Math::sin(p_euler.z);
	Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);

	//optimizer will optimize away all this anyway
	*this = xmat * (ymat * zmat);
}

// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis::get_euler_yxz() const {

	/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
#ifdef MATH_CHECKS
	ERR_FAIL_COND(!is_rotation());
#endif
*/
	// Euler angles in YXZ convention.
	// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
	//
	// rot =  cy*cz+sy*sx*sz    cz*sy*sx-cy*sz        cx*sy
	//        cx*sz             cx*cz                 -sx
	//        cy*sx*sz-cz*sy    cy*cz*sx+sy*sz        cy*cx

	Vector3 euler;

	real_t m12 = elements[1][2];

	if (m12 < 1) {
		if (m12 > -1) {
			// is this a pure X rotation?
			if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
				// return the simplest form (human friendlier in editor and scripts)
				euler.x = atan2(-m12, elements[1][1]);
				euler.y = 0;
				euler.z = 0;
			} else {
				euler.x = asin(-m12);
				euler.y = atan2(elements[0][2], elements[2][2]);
				euler.z = atan2(elements[1][0], elements[1][1]);
			}
		} else { // m12 == -1
			euler.x = Math_PI * 0.5;
			euler.y = -atan2(-elements[0][1], elements[0][0]);
			euler.z = 0;
		}
	} else { // m12 == 1
		euler.x = -Math_PI * 0.5;
		euler.y = -atan2(-elements[0][1], elements[0][0]);
		euler.z = 0;
	}

	return euler;
}

// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses YXZ convention (Z is the first rotation).
void Basis::set_euler_yxz(const Vector3 &p_euler) {

	real_t c, s;

	c = Math::cos(p_euler.x);
	s = Math::sin(p_euler.x);
	Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);

	c = Math::cos(p_euler.y);
	s = Math::sin(p_euler.y);
	Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);

	c = Math::cos(p_euler.z);
	s = Math::sin(p_euler.z);
	Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);

	//optimizer will optimize away all this anyway
	*this = ymat * xmat * zmat;
}

bool Basis::is_equal_approx(const Basis &p_basis) const {

	return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]);
}

bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon) const {

	for (int i = 0; i < 3; i++) {
		for (int j = 0; j < 3; j++) {
			if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon))
				return false;
		}
	}

	return true;
}

bool Basis::operator==(const Basis &p_matrix) const {

	for (int i = 0; i < 3; i++) {
		for (int j = 0; j < 3; j++) {
			if (elements[i][j] != p_matrix.elements[i][j])
				return false;
		}
	}

	return true;
}

bool Basis::operator!=(const Basis &p_matrix) const {

	return (!(*this == p_matrix));
}

Basis::operator String() const {

	String mtx;
	for (int i = 0; i < 3; i++) {

		for (int j = 0; j < 3; j++) {

			if (i != 0 || j != 0)
				mtx += ", ";

			mtx += rtos(elements[i][j]);
		}
	}

	return mtx;
}

Quat Basis::get_quat() const {

#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead.");
#endif
	/* Allow getting a quaternion from an unnormalized transform */
	Basis m = *this;
	real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
	real_t temp[4];

	if (trace > 0.0) {
		real_t s = Math::sqrt(trace + 1.0);
		temp[3] = (s * 0.5);
		s = 0.5 / s;

		temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
		temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
		temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
	} else {
		int i = m.elements[0][0] < m.elements[1][1] ?
						(m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
						(m.elements[0][0] < m.elements[2][2] ? 2 : 0);
		int j = (i + 1) % 3;
		int k = (i + 2) % 3;

		real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0);
		temp[i] = s * 0.5;
		s = 0.5 / s;

		temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
		temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
		temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
	}

	return Quat(temp[0], temp[1], temp[2], temp[3]);
}

static const Basis _ortho_bases[24] = {
	Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
	Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
	Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
	Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
	Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
	Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
	Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
	Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
	Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
	Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
	Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
	Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
	Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
	Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
	Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
	Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
	Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
	Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
	Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
	Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
	Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
	Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
	Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
	Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
};

int Basis::get_orthogonal_index() const {

	//could be sped up if i come up with a way
	Basis orth = *this;
	for (int i = 0; i < 3; i++) {
		for (int j = 0; j < 3; j++) {

			real_t v = orth[i][j];
			if (v > 0.5)
				v = 1.0;
			else if (v < -0.5)
				v = -1.0;
			else
				v = 0;

			orth[i][j] = v;
		}
	}

	for (int i = 0; i < 24; i++) {

		if (_ortho_bases[i] == orth)
			return i;
	}

	return 0;
}

void Basis::set_orthogonal_index(int p_index) {

	//there only exist 24 orthogonal bases in r3
	ERR_FAIL_INDEX(p_index, 24);

	*this = _ortho_bases[p_index];
}

void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
	/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
#ifdef MATH_CHECKS
	ERR_FAIL_COND(!is_rotation());
#endif
*/
	real_t angle, x, y, z; // variables for result
	real_t epsilon = 0.01; // margin to allow for rounding errors
	real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees

	if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
		// singularity found
		// first check for identity matrix which must have +1 for all terms
		//  in leading diagonaland zero in other terms
		if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
			// this singularity is identity matrix so angle = 0
			r_axis = Vector3(0, 1, 0);
			r_angle = 0;
			return;
		}
		// otherwise this singularity is angle = 180
		angle = Math_PI;
		real_t xx = (elements[0][0] + 1) / 2;
		real_t yy = (elements[1][1] + 1) / 2;
		real_t zz = (elements[2][2] + 1) / 2;
		real_t xy = (elements[1][0] + elements[0][1]) / 4;
		real_t xz = (elements[2][0] + elements[0][2]) / 4;
		real_t yz = (elements[2][1] + elements[1][2]) / 4;
		if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
			if (xx < epsilon) {
				x = 0;
				y = Math_SQRT12;
				z = Math_SQRT12;
			} else {
				x = Math::sqrt(xx);
				y = xy / x;
				z = xz / x;
			}
		} else if (yy > zz) { // elements[1][1] is the largest diagonal term
			if (yy < epsilon) {
				x = Math_SQRT12;
				y = 0;
				z = Math_SQRT12;
			} else {
				y = Math::sqrt(yy);
				x = xy / y;
				z = yz / y;
			}
		} else { // elements[2][2] is the largest diagonal term so base result on this
			if (zz < epsilon) {
				x = Math_SQRT12;
				y = Math_SQRT12;
				z = 0;
			} else {
				z = Math::sqrt(zz);
				x = xz / z;
				y = yz / z;
			}
		}
		r_axis = Vector3(x, y, z);
		r_angle = angle;
		return;
	}
	// as we have reached here there are no singularities so we can handle normally
	real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise

	angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
	if (angle < 0)
		s = -s;
	x = (elements[2][1] - elements[1][2]) / s;
	y = (elements[0][2] - elements[2][0]) / s;
	z = (elements[1][0] - elements[0][1]) / s;

	r_axis = Vector3(x, y, z);
	r_angle = angle;
}

void Basis::set_quat(const Quat &p_quat) {

	real_t d = p_quat.length_squared();
	real_t s = 2.0 / d;
	real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
	real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
	real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
	real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
	set(1.0 - (yy + zz), xy - wz, xz + wy,
			xy + wz, 1.0 - (xx + zz), yz - wx,
			xz - wy, yz + wx, 1.0 - (xx + yy));
}

void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
#ifdef MATH_CHECKS
	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
	Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
	real_t cosine = Math::cos(p_phi);
	elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
	elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
	elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);

	real_t sine = Math::sin(p_phi);
	real_t t = 1 - cosine;

	real_t xyzt = p_axis.x * p_axis.y * t;
	real_t zyxs = p_axis.z * sine;
	elements[0][1] = xyzt - zyxs;
	elements[1][0] = xyzt + zyxs;

	xyzt = p_axis.x * p_axis.z * t;
	zyxs = p_axis.y * sine;
	elements[0][2] = xyzt + zyxs;
	elements[2][0] = xyzt - zyxs;

	xyzt = p_axis.y * p_axis.z * t;
	zyxs = p_axis.x * sine;
	elements[1][2] = xyzt - zyxs;
	elements[2][1] = xyzt + zyxs;
}

void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {
	set_diagonal(p_scale);
	rotate(p_axis, p_phi);
}

void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
	set_diagonal(p_scale);
	rotate(p_euler);
}

void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) {
	set_diagonal(p_scale);
	rotate(p_quat);
}

void Basis::set_diagonal(const Vector3 &p_diag) {
	elements[0][0] = p_diag.x;
	elements[0][1] = 0;
	elements[0][2] = 0;

	elements[1][0] = 0;
	elements[1][1] = p_diag.y;
	elements[1][2] = 0;

	elements[2][0] = 0;
	elements[2][1] = 0;
	elements[2][2] = p_diag.z;
}

Basis Basis::slerp(const Basis &target, const real_t &t) const {

	//consider scale
	Quat from(*this);
	Quat to(target);

	Basis b(from.slerp(to, t));
	b.elements[0] *= Math::lerp(elements[0].length(), target.elements[0].length(), t);
	b.elements[1] *= Math::lerp(elements[1].length(), target.elements[1].length(), t);
	b.elements[2] *= Math::lerp(elements[2].length(), target.elements[2].length(), t);

	return b;
}