summaryrefslogtreecommitdiff
path: root/core/math/basis.cpp
blob: 234a4ddb79da32685823cdc55f328114ba2c9cb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
/**************************************************************************/
/*  basis.cpp                                                             */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "basis.h"

#include "core/math/math_funcs.h"
#include "core/string/ustring.h"

#define cofac(row1, col1, row2, col2) \
	(rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])

void Basis::invert() {
	real_t co[3] = {
		cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
	};
	real_t det = rows[0][0] * co[0] +
			rows[0][1] * co[1] +
			rows[0][2] * co[2];
#ifdef MATH_CHECKS
	ERR_FAIL_COND(det == 0);
#endif
	real_t s = 1.0f / det;

	set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
			co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
			co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}

void Basis::orthonormalize() {
	// Gram-Schmidt Process

	Vector3 x = get_column(0);
	Vector3 y = get_column(1);
	Vector3 z = get_column(2);

	x.normalize();
	y = (y - x * (x.dot(y)));
	y.normalize();
	z = (z - x * (x.dot(z)) - y * (y.dot(z)));
	z.normalize();

	set_column(0, x);
	set_column(1, y);
	set_column(2, z);
}

Basis Basis::orthonormalized() const {
	Basis c = *this;
	c.orthonormalize();
	return c;
}

void Basis::orthogonalize() {
	Vector3 scl = get_scale();
	orthonormalize();
	scale_local(scl);
}

Basis Basis::orthogonalized() const {
	Basis c = *this;
	c.orthogonalize();
	return c;
}

bool Basis::is_orthogonal() const {
	Basis identity;
	Basis m = (*this) * transposed();

	return m.is_equal_approx(identity);
}

bool Basis::is_diagonal() const {
	return (
			Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
			Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) &&
			Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
}

bool Basis::is_rotation() const {
	return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
}

#ifdef MATH_CHECKS
// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
bool Basis::is_symmetric() const {
	if (!Math::is_equal_approx(rows[0][1], rows[1][0])) {
		return false;
	}
	if (!Math::is_equal_approx(rows[0][2], rows[2][0])) {
		return false;
	}
	if (!Math::is_equal_approx(rows[1][2], rows[2][1])) {
		return false;
	}

	return true;
}
#endif

Basis Basis::diagonalize() {
// NOTE: only implemented for symmetric matrices
// with the Jacobi iterative method
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
	const int ite_max = 1024;

	real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2];

	int ite = 0;
	Basis acc_rot;
	while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
		real_t el01_2 = rows[0][1] * rows[0][1];
		real_t el02_2 = rows[0][2] * rows[0][2];
		real_t el12_2 = rows[1][2] * rows[1][2];
		// Find the pivot element
		int i, j;
		if (el01_2 > el02_2) {
			if (el12_2 > el01_2) {
				i = 1;
				j = 2;
			} else {
				i = 0;
				j = 1;
			}
		} else {
			if (el12_2 > el02_2) {
				i = 1;
				j = 2;
			} else {
				i = 0;
				j = 2;
			}
		}

		// Compute the rotation angle
		real_t angle;
		if (Math::is_equal_approx(rows[j][j], rows[i][i])) {
			angle = Math_PI / 4;
		} else {
			angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i]));
		}

		// Compute the rotation matrix
		Basis rot;
		rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle);
		rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle));

		// Update the off matrix norm
		off_matrix_norm_2 -= rows[i][j] * rows[i][j];

		// Apply the rotation
		*this = rot * *this * rot.transposed();
		acc_rot = rot * acc_rot;
	}

	return acc_rot;
}

Basis Basis::inverse() const {
	Basis inv = *this;
	inv.invert();
	return inv;
}

void Basis::transpose() {
	SWAP(rows[0][1], rows[1][0]);
	SWAP(rows[0][2], rows[2][0]);
	SWAP(rows[1][2], rows[2][1]);
}

Basis Basis::transposed() const {
	Basis tr = *this;
	tr.transpose();
	return tr;
}

Basis Basis::from_scale(const Vector3 &p_scale) {
	return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z);
}

// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {
	rows[0][0] *= p_scale.x;
	rows[0][1] *= p_scale.x;
	rows[0][2] *= p_scale.x;
	rows[1][0] *= p_scale.y;
	rows[1][1] *= p_scale.y;
	rows[1][2] *= p_scale.y;
	rows[2][0] *= p_scale.z;
	rows[2][1] *= p_scale.z;
	rows[2][2] *= p_scale.z;
}

Basis Basis::scaled(const Vector3 &p_scale) const {
	Basis m = *this;
	m.scale(p_scale);
	return m;
}

void Basis::scale_local(const Vector3 &p_scale) {
	// performs a scaling in object-local coordinate system:
	// M -> (M.S.Minv).M = M.S.
	*this = scaled_local(p_scale);
}

void Basis::scale_orthogonal(const Vector3 &p_scale) {
	*this = scaled_orthogonal(p_scale);
}

Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
	Basis m = *this;
	Vector3 s = Vector3(-1, -1, -1) + p_scale;
	Vector3 dots;
	Basis b;
	for (int i = 0; i < 3; i++) {
		for (int j = 0; j < 3; j++) {
			dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j)));
		}
	}
	m.scale_local(Vector3(1, 1, 1) + dots);
	return m;
}

float Basis::get_uniform_scale() const {
	return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
}

Basis Basis::scaled_local(const Vector3 &p_scale) const {
	return (*this) * Basis::from_scale(p_scale);
}

Vector3 Basis::get_scale_abs() const {
	return Vector3(
			Vector3(rows[0][0], rows[1][0], rows[2][0]).length(),
			Vector3(rows[0][1], rows[1][1], rows[2][1]).length(),
			Vector3(rows[0][2], rows[1][2], rows[2][2]).length());
}

Vector3 Basis::get_scale_local() const {
	real_t det_sign = SIGN(determinant());
	return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length());
}

// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
Vector3 Basis::get_scale() const {
	// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
	// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
	// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
	//
	// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
	// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
	// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
	// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
	// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
	// Therefore, we are going to do this decomposition by sticking to a particular convention.
	// This may lead to confusion for some users though.
	//
	// The convention we use here is to absorb the sign flip into the scaling matrix.
	// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
	//
	// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
	// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
	// matrix elements.
	//
	// The rotation part of this decomposition is returned by get_rotation* functions.
	real_t det_sign = SIGN(determinant());
	return det_sign * get_scale_abs();
}

// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(determinant() == 0, Vector3());

	Basis m = transposed() * (*this);
	ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
#endif
	Vector3 scale = get_scale();
	Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
	rotref = (*this) * inv_scale;

#ifdef MATH_CHECKS
	ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
#endif
	return scale.abs();
}

// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
// The main use of Basis is as Transform.basis, which is used by the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const {
	return Basis(p_axis, p_angle) * (*this);
}

void Basis::rotate(const Vector3 &p_axis, real_t p_angle) {
	*this = rotated(p_axis, p_angle);
}

void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) {
	// performs a rotation in object-local coordinate system:
	// M -> (M.R.Minv).M = M.R.
	*this = rotated_local(p_axis, p_angle);
}

Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
	return (*this) * Basis(p_axis, p_angle);
}

Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const {
	return Basis::from_euler(p_euler, p_order) * (*this);
}

void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) {
	*this = rotated(p_euler, p_order);
}

Basis Basis::rotated(const Quaternion &p_quaternion) const {
	return Basis(p_quaternion) * (*this);
}

void Basis::rotate(const Quaternion &p_quaternion) {
	*this = rotated(p_quaternion);
}

Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = orthonormalized();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	return m.get_euler(p_order);
}

Quaternion Basis::get_rotation_quaternion() const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = orthonormalized();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	return m.get_quaternion();
}

void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) {
	// Takes two vectors and rotates the basis from the first vector to the second vector.
	// Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
	const Vector3 axis = p_start_direction.cross(p_end_direction).normalized();
	if (axis.length_squared() != 0) {
		real_t dot = p_start_direction.dot(p_end_direction);
		dot = CLAMP(dot, -1.0f, 1.0f);
		const real_t angle_rads = Math::acos(dot);
		set_axis_angle(axis, angle_rads);
	}
}

void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = orthonormalized();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	m.get_axis_angle(p_axis, p_angle);
}

void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
	// See the comment in get_scale() for further information.
	Basis m = transposed();
	m.orthonormalize();
	real_t det = m.determinant();
	if (det < 0) {
		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
		m.scale(Vector3(-1, -1, -1));
	}

	m.get_axis_angle(p_axis, p_angle);
	p_angle = -p_angle;
}

Vector3 Basis::get_euler(EulerOrder p_order) const {
	switch (p_order) {
		case EulerOrder::XYZ: {
			// Euler angles in XYZ convention.
			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
			//
			// rot =  cy*cz          -cy*sz           sy
			//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
			//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy

			Vector3 euler;
			real_t sy = rows[0][2];
			if (sy < (1.0f - (real_t)CMP_EPSILON)) {
				if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
					// is this a pure Y rotation?
					if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) {
						// return the simplest form (human friendlier in editor and scripts)
						euler.x = 0;
						euler.y = atan2(rows[0][2], rows[0][0]);
						euler.z = 0;
					} else {
						euler.x = Math::atan2(-rows[1][2], rows[2][2]);
						euler.y = Math::asin(sy);
						euler.z = Math::atan2(-rows[0][1], rows[0][0]);
					}
				} else {
					euler.x = Math::atan2(rows[2][1], rows[1][1]);
					euler.y = -Math_PI / 2.0f;
					euler.z = 0.0f;
				}
			} else {
				euler.x = Math::atan2(rows[2][1], rows[1][1]);
				euler.y = Math_PI / 2.0f;
				euler.z = 0.0f;
			}
			return euler;
		}
		case EulerOrder::XZY: {
			// Euler angles in XZY convention.
			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
			//
			// rot =  cz*cy             -sz             cz*sy
			//        sx*sy+cx*cy*sz    cx*cz           cx*sz*sy-cy*sx
			//        cy*sx*sz          cz*sx           cx*cy+sx*sz*sy

			Vector3 euler;
			real_t sz = rows[0][1];
			if (sz < (1.0f - (real_t)CMP_EPSILON)) {
				if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
					euler.x = Math::atan2(rows[2][1], rows[1][1]);
					euler.y = Math::atan2(rows[0][2], rows[0][0]);
					euler.z = Math::asin(-sz);
				} else {
					// It's -1
					euler.x = -Math::atan2(rows[1][2], rows[2][2]);
					euler.y = 0.0f;
					euler.z = Math_PI / 2.0f;
				}
			} else {
				// It's 1
				euler.x = -Math::atan2(rows[1][2], rows[2][2]);
				euler.y = 0.0f;
				euler.z = -Math_PI / 2.0f;
			}
			return euler;
		}
		case EulerOrder::YXZ: {
			// Euler angles in YXZ convention.
			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
			//
			// rot =  cy*cz+sy*sx*sz    cz*sy*sx-cy*sz        cx*sy
			//        cx*sz             cx*cz                 -sx
			//        cy*sx*sz-cz*sy    cy*cz*sx+sy*sz        cy*cx

			Vector3 euler;

			real_t m12 = rows[1][2];

			if (m12 < (1 - (real_t)CMP_EPSILON)) {
				if (m12 > -(1 - (real_t)CMP_EPSILON)) {
					// is this a pure X rotation?
					if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) {
						// return the simplest form (human friendlier in editor and scripts)
						euler.x = atan2(-m12, rows[1][1]);
						euler.y = 0;
						euler.z = 0;
					} else {
						euler.x = asin(-m12);
						euler.y = atan2(rows[0][2], rows[2][2]);
						euler.z = atan2(rows[1][0], rows[1][1]);
					}
				} else { // m12 == -1
					euler.x = Math_PI * 0.5f;
					euler.y = atan2(rows[0][1], rows[0][0]);
					euler.z = 0;
				}
			} else { // m12 == 1
				euler.x = -Math_PI * 0.5f;
				euler.y = -atan2(rows[0][1], rows[0][0]);
				euler.z = 0;
			}

			return euler;
		}
		case EulerOrder::YZX: {
			// Euler angles in YZX convention.
			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
			//
			// rot =  cy*cz             sy*sx-cy*cx*sz     cx*sy+cy*sz*sx
			//        sz                cz*cx              -cz*sx
			//        -cz*sy            cy*sx+cx*sy*sz     cy*cx-sy*sz*sx

			Vector3 euler;
			real_t sz = rows[1][0];
			if (sz < (1.0f - (real_t)CMP_EPSILON)) {
				if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
					euler.x = Math::atan2(-rows[1][2], rows[1][1]);
					euler.y = Math::atan2(-rows[2][0], rows[0][0]);
					euler.z = Math::asin(sz);
				} else {
					// It's -1
					euler.x = Math::atan2(rows[2][1], rows[2][2]);
					euler.y = 0.0f;
					euler.z = -Math_PI / 2.0f;
				}
			} else {
				// It's 1
				euler.x = Math::atan2(rows[2][1], rows[2][2]);
				euler.y = 0.0f;
				euler.z = Math_PI / 2.0f;
			}
			return euler;
		} break;
		case EulerOrder::ZXY: {
			// Euler angles in ZXY convention.
			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
			//
			// rot =  cz*cy-sz*sx*sy    -cx*sz                cz*sy+cy*sz*sx
			//        cy*sz+cz*sx*sy    cz*cx                 sz*sy-cz*cy*sx
			//        -cx*sy            sx                    cx*cy
			Vector3 euler;
			real_t sx = rows[2][1];
			if (sx < (1.0f - (real_t)CMP_EPSILON)) {
				if (sx > -(1.0f - (real_t)CMP_EPSILON)) {
					euler.x = Math::asin(sx);
					euler.y = Math::atan2(-rows[2][0], rows[2][2]);
					euler.z = Math::atan2(-rows[0][1], rows[1][1]);
				} else {
					// It's -1
					euler.x = -Math_PI / 2.0f;
					euler.y = Math::atan2(rows[0][2], rows[0][0]);
					euler.z = 0;
				}
			} else {
				// It's 1
				euler.x = Math_PI / 2.0f;
				euler.y = Math::atan2(rows[0][2], rows[0][0]);
				euler.z = 0;
			}
			return euler;
		} break;
		case EulerOrder::ZYX: {
			// Euler angles in ZYX convention.
			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
			//
			// rot =  cz*cy             cz*sy*sx-cx*sz        sz*sx+cz*cx*cy
			//        cy*sz             cz*cx+sz*sy*sx        cx*sz*sy-cz*sx
			//        -sy               cy*sx                 cy*cx
			Vector3 euler;
			real_t sy = rows[2][0];
			if (sy < (1.0f - (real_t)CMP_EPSILON)) {
				if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
					euler.x = Math::atan2(rows[2][1], rows[2][2]);
					euler.y = Math::asin(-sy);
					euler.z = Math::atan2(rows[1][0], rows[0][0]);
				} else {
					// It's -1
					euler.x = 0;
					euler.y = Math_PI / 2.0f;
					euler.z = -Math::atan2(rows[0][1], rows[1][1]);
				}
			} else {
				// It's 1
				euler.x = 0;
				euler.y = -Math_PI / 2.0f;
				euler.z = -Math::atan2(rows[0][1], rows[1][1]);
			}
			return euler;
		}
		default: {
			ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
		}
	}
	return Vector3();
}

void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
	real_t c, s;

	c = Math::cos(p_euler.x);
	s = Math::sin(p_euler.x);
	Basis xmat(1, 0, 0, 0, c, -s, 0, s, c);

	c = Math::cos(p_euler.y);
	s = Math::sin(p_euler.y);
	Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c);

	c = Math::cos(p_euler.z);
	s = Math::sin(p_euler.z);
	Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1);

	switch (p_order) {
		case EulerOrder::XYZ: {
			*this = xmat * (ymat * zmat);
		} break;
		case EulerOrder::XZY: {
			*this = xmat * zmat * ymat;
		} break;
		case EulerOrder::YXZ: {
			*this = ymat * xmat * zmat;
		} break;
		case EulerOrder::YZX: {
			*this = ymat * zmat * xmat;
		} break;
		case EulerOrder::ZXY: {
			*this = zmat * xmat * ymat;
		} break;
		case EulerOrder::ZYX: {
			*this = zmat * ymat * xmat;
		} break;
		default: {
			ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)");
		}
	}
}

bool Basis::is_equal_approx(const Basis &p_basis) const {
	return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
}

bool Basis::is_finite() const {
	return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite();
}

bool Basis::operator==(const Basis &p_matrix) const {
	for (int i = 0; i < 3; i++) {
		for (int j = 0; j < 3; j++) {
			if (rows[i][j] != p_matrix.rows[i][j]) {
				return false;
			}
		}
	}

	return true;
}

bool Basis::operator!=(const Basis &p_matrix) const {
	return (!(*this == p_matrix));
}

Basis::operator String() const {
	return "[X: " + get_column(0).operator String() +
			", Y: " + get_column(1).operator String() +
			", Z: " + get_column(2).operator String() + "]";
}

Quaternion Basis::get_quaternion() const {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors.");
#endif
	/* Allow getting a quaternion from an unnormalized transform */
	Basis m = *this;
	real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
	real_t temp[4];

	if (trace > 0.0f) {
		real_t s = Math::sqrt(trace + 1.0f);
		temp[3] = (s * 0.5f);
		s = 0.5f / s;

		temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
		temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
		temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
	} else {
		int i = m.rows[0][0] < m.rows[1][1]
				? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
				: (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
		int j = (i + 1) % 3;
		int k = (i + 2) % 3;

		real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
		temp[i] = s * 0.5f;
		s = 0.5f / s;

		temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
		temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
		temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
	}

	return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}

void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
	/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
#ifdef MATH_CHECKS
	ERR_FAIL_COND(!is_rotation());
#endif
	*/

	// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
	real_t x, y, z; // Variables for result.
	if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
		// Singularity found.
		// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
		if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
			// This singularity is identity matrix so angle = 0.
			r_axis = Vector3(0, 1, 0);
			r_angle = 0;
			return;
		}
		// Otherwise this singularity is angle = 180.
		real_t xx = (rows[0][0] + 1) / 2;
		real_t yy = (rows[1][1] + 1) / 2;
		real_t zz = (rows[2][2] + 1) / 2;
		real_t xy = (rows[0][1] + rows[1][0]) / 4;
		real_t xz = (rows[0][2] + rows[2][0]) / 4;
		real_t yz = (rows[1][2] + rows[2][1]) / 4;

		if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
			if (xx < CMP_EPSILON) {
				x = 0;
				y = Math_SQRT12;
				z = Math_SQRT12;
			} else {
				x = Math::sqrt(xx);
				y = xy / x;
				z = xz / x;
			}
		} else if (yy > zz) { // rows[1][1] is the largest diagonal term.
			if (yy < CMP_EPSILON) {
				x = Math_SQRT12;
				y = 0;
				z = Math_SQRT12;
			} else {
				y = Math::sqrt(yy);
				x = xy / y;
				z = yz / y;
			}
		} else { // rows[2][2] is the largest diagonal term so base result on this.
			if (zz < CMP_EPSILON) {
				x = Math_SQRT12;
				y = Math_SQRT12;
				z = 0;
			} else {
				z = Math::sqrt(zz);
				x = xz / z;
				y = yz / z;
			}
		}
		r_axis = Vector3(x, y, z);
		r_angle = Math_PI;
		return;
	}
	// As we have reached here there are no singularities so we can handle normally.
	double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize.

	if (Math::abs(s) < CMP_EPSILON) {
		// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
		s = 1;
	}

	x = (rows[2][1] - rows[1][2]) / s;
	y = (rows[0][2] - rows[2][0]) / s;
	z = (rows[1][0] - rows[0][1]) / s;

	r_axis = Vector3(x, y, z);
	// CLAMP to avoid NaN if the value passed to acos is not in [0,1].
	r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0));
}

void Basis::set_quaternion(const Quaternion &p_quaternion) {
	real_t d = p_quaternion.length_squared();
	real_t s = 2.0f / d;
	real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
	real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
	real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
	real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
	set(1.0f - (yy + zz), xy - wz, xz + wy,
			xy + wz, 1.0f - (xx + zz), yz - wx,
			xz - wy, yz + wx, 1.0f - (xx + yy));
}

void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
#ifdef MATH_CHECKS
	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
	Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
	real_t cosine = Math::cos(p_angle);
	rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
	rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
	rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);

	real_t sine = Math::sin(p_angle);
	real_t t = 1 - cosine;

	real_t xyzt = p_axis.x * p_axis.y * t;
	real_t zyxs = p_axis.z * sine;
	rows[0][1] = xyzt - zyxs;
	rows[1][0] = xyzt + zyxs;

	xyzt = p_axis.x * p_axis.z * t;
	zyxs = p_axis.y * sine;
	rows[0][2] = xyzt + zyxs;
	rows[2][0] = xyzt - zyxs;

	xyzt = p_axis.y * p_axis.z * t;
	zyxs = p_axis.x * sine;
	rows[1][2] = xyzt - zyxs;
	rows[2][1] = xyzt + zyxs;
}

void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) {
	_set_diagonal(p_scale);
	rotate(p_axis, p_angle);
}

void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) {
	_set_diagonal(p_scale);
	rotate(p_euler, p_order);
}

void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
	_set_diagonal(p_scale);
	rotate(p_quaternion);
}

// This also sets the non-diagonal elements to 0, which is misleading from the
// name, so we want this method to be private. Use `from_scale` externally.
void Basis::_set_diagonal(const Vector3 &p_diag) {
	rows[0][0] = p_diag.x;
	rows[0][1] = 0;
	rows[0][2] = 0;

	rows[1][0] = 0;
	rows[1][1] = p_diag.y;
	rows[1][2] = 0;

	rows[2][0] = 0;
	rows[2][1] = 0;
	rows[2][2] = p_diag.z;
}

Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
	Basis b;
	b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight);
	b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight);
	b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight);

	return b;
}

Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
	//consider scale
	Quaternion from(*this);
	Quaternion to(p_to);

	Basis b(from.slerp(to, p_weight));
	b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight);
	b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight);
	b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight);

	return b;
}

void Basis::rotate_sh(real_t *p_values) {
	// code by John Hable
	// http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
	// this code is Public Domain

	const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
	const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
	const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))

	const static real_t s_c_scale = 1.0 / 0.91529123286551084;
	const static real_t s_c_scale_inv = 0.91529123286551084;

	const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
	const static real_t s_c4_div_c3 = s_c4 / s_c3;
	const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;

	const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
	const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;

	const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };

	real_t m00 = rows[0][0];
	real_t m01 = rows[0][1];
	real_t m02 = rows[0][2];
	real_t m10 = rows[1][0];
	real_t m11 = rows[1][1];
	real_t m12 = rows[1][2];
	real_t m20 = rows[2][0];
	real_t m21 = rows[2][1];
	real_t m22 = rows[2][2];

	p_values[0] = src[0];
	p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
	p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
	p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];

	real_t sh0 = src[7] + src[8] + src[8] - src[5];
	real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
	real_t sh2 = src[4];
	real_t sh3 = -src[7];
	real_t sh4 = -src[5];

	// Rotations.  R0 and R1 just use the raw matrix columns
	real_t r2x = m00 + m01;
	real_t r2y = m10 + m11;
	real_t r2z = m20 + m21;

	real_t r3x = m00 + m02;
	real_t r3y = m10 + m12;
	real_t r3z = m20 + m22;

	real_t r4x = m01 + m02;
	real_t r4y = m11 + m12;
	real_t r4z = m21 + m22;

	// dense matrix multiplication one column at a time

	// column 0
	real_t sh0_x = sh0 * m00;
	real_t sh0_y = sh0 * m10;
	real_t d0 = sh0_x * m10;
	real_t d1 = sh0_y * m20;
	real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
	real_t d3 = sh0_x * m20;
	real_t d4 = sh0_x * m00 - sh0_y * m10;

	// column 1
	real_t sh1_x = sh1 * m02;
	real_t sh1_y = sh1 * m12;
	d0 += sh1_x * m12;
	d1 += sh1_y * m22;
	d2 += sh1 * (m22 * m22 + s_c4_div_c3);
	d3 += sh1_x * m22;
	d4 += sh1_x * m02 - sh1_y * m12;

	// column 2
	real_t sh2_x = sh2 * r2x;
	real_t sh2_y = sh2 * r2y;
	d0 += sh2_x * r2y;
	d1 += sh2_y * r2z;
	d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
	d3 += sh2_x * r2z;
	d4 += sh2_x * r2x - sh2_y * r2y;

	// column 3
	real_t sh3_x = sh3 * r3x;
	real_t sh3_y = sh3 * r3y;
	d0 += sh3_x * r3y;
	d1 += sh3_y * r3z;
	d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
	d3 += sh3_x * r3z;
	d4 += sh3_x * r3x - sh3_y * r3y;

	// column 4
	real_t sh4_x = sh4 * r4x;
	real_t sh4_y = sh4 * r4y;
	d0 += sh4_x * r4y;
	d1 += sh4_y * r4z;
	d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
	d3 += sh4_x * r4z;
	d4 += sh4_x * r4x - sh4_y * r4y;

	// extra multipliers
	p_values[4] = d0;
	p_values[5] = -d1;
	p_values[6] = d2 * s_scale_dst2;
	p_values[7] = -d3;
	p_values[8] = d4 * s_scale_dst4;
}

Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero.");
	ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero.");
#endif
	Vector3 v_z = -p_target.normalized();
	Vector3 v_x = p_up.cross(v_z);
#ifdef MATH_CHECKS
	ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other.");
#endif
	v_x.normalize();
	Vector3 v_y = v_z.cross(v_x);

	Basis basis;
	basis.set_columns(v_x, v_y, v_z);
	return basis;
}