/** * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ /* *************************************************************** * Tuning parameters *****************************************************************/ /*! * HEAPMODE : * Select how default decompression function ZSTD_decompress() will allocate memory, * in memory stack (0), or in memory heap (1, requires malloc()) */ #ifndef ZSTD_HEAPMODE # define ZSTD_HEAPMODE 1 #endif /*! * LEGACY_SUPPORT : * if set to 1, ZSTD_decompress() can decode older formats (v0.1+) */ #ifndef ZSTD_LEGACY_SUPPORT # define ZSTD_LEGACY_SUPPORT 0 #endif /*! * MAXWINDOWSIZE_DEFAULT : * maximum window size accepted by DStream, by default. * Frames requiring more memory will be rejected. */ #ifndef ZSTD_MAXWINDOWSIZE_DEFAULT # define ZSTD_MAXWINDOWSIZE_DEFAULT ((1 << ZSTD_WINDOWLOG_MAX) + 1) /* defined within zstd.h */ #endif /*-******************************************************* * Dependencies *********************************************************/ #include /* memcpy, memmove, memset */ #include "mem.h" /* low level memory routines */ #define FSE_STATIC_LINKING_ONLY #include "fse.h" #define HUF_STATIC_LINKING_ONLY #include "huf.h" #include "zstd_internal.h" #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) # include "zstd_legacy.h" #endif #if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ # include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ # define ZSTD_PREFETCH(ptr) _mm_prefetch((const char*)ptr, _MM_HINT_T0) #elif defined(__GNUC__) # define ZSTD_PREFETCH(ptr) __builtin_prefetch(ptr, 0, 0) #else # define ZSTD_PREFETCH(ptr) /* disabled */ #endif /*-************************************* * Errors ***************************************/ #define ZSTD_isError ERR_isError /* for inlining */ #define FSE_isError ERR_isError #define HUF_isError ERR_isError /*_******************************************************* * Memory operations **********************************************************/ static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); } /*-************************************************************* * Context management ***************************************************************/ typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock, ZSTDds_decompressLastBlock, ZSTDds_checkChecksum, ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage; typedef enum { zdss_init=0, zdss_loadHeader, zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage; typedef struct { FSE_DTable LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)]; FSE_DTable OFTable[FSE_DTABLE_SIZE_U32(OffFSELog)]; FSE_DTable MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)]; HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */ U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; U32 rep[ZSTD_REP_NUM]; } ZSTD_entropyTables_t; struct ZSTD_DCtx_s { const FSE_DTable* LLTptr; const FSE_DTable* MLTptr; const FSE_DTable* OFTptr; const HUF_DTable* HUFptr; ZSTD_entropyTables_t entropy; const void* previousDstEnd; /* detect continuity */ const void* base; /* start of current segment */ const void* vBase; /* virtual start of previous segment if it was just before current one */ const void* dictEnd; /* end of previous segment */ size_t expected; ZSTD_frameHeader fParams; blockType_e bType; /* used in ZSTD_decompressContinue(), to transfer blockType between header decoding and block decoding stages */ ZSTD_dStage stage; U32 litEntropy; U32 fseEntropy; XXH64_state_t xxhState; size_t headerSize; U32 dictID; const BYTE* litPtr; ZSTD_customMem customMem; size_t litSize; size_t rleSize; size_t staticSize; /* streaming */ ZSTD_DDict* ddictLocal; const ZSTD_DDict* ddict; ZSTD_dStreamStage streamStage; char* inBuff; size_t inBuffSize; size_t inPos; size_t maxWindowSize; char* outBuff; size_t outBuffSize; size_t outStart; size_t outEnd; size_t blockSize; size_t lhSize; void* legacyContext; U32 previousLegacyVersion; U32 legacyVersion; U32 hostageByte; /* workspace */ BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH]; BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; }; /* typedef'd to ZSTD_DCtx within "zstd.h" */ size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) { if (dctx==NULL) return 0; /* support sizeof NULL */ return sizeof(*dctx) + ZSTD_sizeof_DDict(dctx->ddictLocal) + dctx->inBuffSize + dctx->outBuffSize; } size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); } size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) { dctx->expected = ZSTD_frameHeaderSize_prefix; dctx->stage = ZSTDds_getFrameHeaderSize; dctx->previousDstEnd = NULL; dctx->base = NULL; dctx->vBase = NULL; dctx->dictEnd = NULL; dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ dctx->litEntropy = dctx->fseEntropy = 0; dctx->dictID = 0; MEM_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue)); memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */ dctx->LLTptr = dctx->entropy.LLTable; dctx->MLTptr = dctx->entropy.MLTable; dctx->OFTptr = dctx->entropy.OFTable; dctx->HUFptr = dctx->entropy.hufTable; return 0; } static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx) { ZSTD_decompressBegin(dctx); /* cannot fail */ dctx->staticSize = 0; dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; dctx->ddict = NULL; dctx->ddictLocal = NULL; dctx->inBuff = NULL; dctx->inBuffSize = 0; dctx->outBuffSize= 0; dctx->streamStage = zdss_init; } ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) { if (!customMem.customAlloc ^ !customMem.customFree) return NULL; { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_malloc(sizeof(*dctx), customMem); if (!dctx) return NULL; dctx->customMem = customMem; dctx->legacyContext = NULL; dctx->previousLegacyVersion = 0; ZSTD_initDCtx_internal(dctx); return dctx; } } ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize) { ZSTD_DCtx* dctx = (ZSTD_DCtx*) workspace; if ((size_t)workspace & 7) return NULL; /* 8-aligned */ if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */ ZSTD_initDCtx_internal(dctx); dctx->staticSize = workspaceSize; dctx->inBuff = (char*)(dctx+1); return dctx; } ZSTD_DCtx* ZSTD_createDCtx(void) { return ZSTD_createDCtx_advanced(ZSTD_defaultCMem); } size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) { if (dctx==NULL) return 0; /* support free on NULL */ if (dctx->staticSize) return ERROR(memory_allocation); /* not compatible with static DCtx */ { ZSTD_customMem const cMem = dctx->customMem; ZSTD_freeDDict(dctx->ddictLocal); dctx->ddictLocal = NULL; ZSTD_free(dctx->inBuff, cMem); dctx->inBuff = NULL; #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (dctx->legacyContext) ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion); #endif ZSTD_free(dctx, cMem); return 0; } } /* no longer useful */ void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) { size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx); memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */ } /*-************************************************************* * Decompression section ***************************************************************/ /*! ZSTD_isFrame() : * Tells if the content of `buffer` starts with a valid Frame Identifier. * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. * Note 3 : Skippable Frame Identifiers are considered valid. */ unsigned ZSTD_isFrame(const void* buffer, size_t size) { if (size < 4) return 0; { U32 const magic = MEM_readLE32(buffer); if (magic == ZSTD_MAGICNUMBER) return 1; if ((magic & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) return 1; } #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(buffer, size)) return 1; #endif return 0; } /** ZSTD_frameHeaderSize() : * srcSize must be >= ZSTD_frameHeaderSize_prefix. * @return : size of the Frame Header */ size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) { if (srcSize < ZSTD_frameHeaderSize_prefix) return ERROR(srcSize_wrong); { BYTE const fhd = ((const BYTE*)src)[4]; U32 const dictID= fhd & 3; U32 const singleSegment = (fhd >> 5) & 1; U32 const fcsId = fhd >> 6; return ZSTD_frameHeaderSize_prefix + !singleSegment + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] + (singleSegment && !fcsId); } } /** ZSTD_getFrameHeader() : * decode Frame Header, or require larger `srcSize`. * @return : 0, `zfhPtr` is correctly filled, * >0, `srcSize` is too small, result is expected `srcSize`, * or an error code, which can be tested using ZSTD_isError() */ size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize) { const BYTE* ip = (const BYTE*)src; if (srcSize < ZSTD_frameHeaderSize_prefix) return ZSTD_frameHeaderSize_prefix; if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) { if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ if (srcSize < ZSTD_skippableHeaderSize) return ZSTD_skippableHeaderSize; /* magic number + frame length */ memset(zfhPtr, 0, sizeof(*zfhPtr)); zfhPtr->frameContentSize = MEM_readLE32((const char *)src + 4); zfhPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */ return 0; } return ERROR(prefix_unknown); } /* ensure there is enough `srcSize` to fully read/decode frame header */ { size_t const fhsize = ZSTD_frameHeaderSize(src, srcSize); if (srcSize < fhsize) return fhsize; } { BYTE const fhdByte = ip[4]; size_t pos = 5; U32 const dictIDSizeCode = fhdByte&3; U32 const checksumFlag = (fhdByte>>2)&1; U32 const singleSegment = (fhdByte>>5)&1; U32 const fcsID = fhdByte>>6; U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; U32 windowSize = 0; U32 dictID = 0; U64 frameContentSize = 0; if ((fhdByte & 0x08) != 0) return ERROR(frameParameter_unsupported); /* reserved bits, must be zero */ if (!singleSegment) { BYTE const wlByte = ip[pos++]; U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN; if (windowLog > ZSTD_WINDOWLOG_MAX) return ERROR(frameParameter_windowTooLarge); windowSize = (1U << windowLog); windowSize += (windowSize >> 3) * (wlByte&7); } switch(dictIDSizeCode) { default: /* impossible */ case 0 : break; case 1 : dictID = ip[pos]; pos++; break; case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; } switch(fcsID) { default: /* impossible */ case 0 : if (singleSegment) frameContentSize = ip[pos]; break; case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; case 2 : frameContentSize = MEM_readLE32(ip+pos); break; case 3 : frameContentSize = MEM_readLE64(ip+pos); break; } if (!windowSize) windowSize = (U32)frameContentSize; if (windowSize > windowSizeMax) return ERROR(frameParameter_windowTooLarge); zfhPtr->frameContentSize = frameContentSize; zfhPtr->windowSize = windowSize; zfhPtr->dictID = dictID; zfhPtr->checksumFlag = checksumFlag; } return 0; } /** ZSTD_getFrameContentSize() : * compatible with legacy mode * @return : decompressed size of the single frame pointed to be `src` if known, otherwise * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */ unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize) { #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(src, srcSize)) { unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize); return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret; } #endif { ZSTD_frameHeader fParams; if (ZSTD_getFrameHeader(&fParams, src, srcSize) != 0) return ZSTD_CONTENTSIZE_ERROR; if (fParams.windowSize == 0) { /* Either skippable or empty frame, size == 0 either way */ return 0; } else if (fParams.frameContentSize != 0) { return fParams.frameContentSize; } else { return ZSTD_CONTENTSIZE_UNKNOWN; } } } /** ZSTD_findDecompressedSize() : * compatible with legacy mode * `srcSize` must be the exact length of some number of ZSTD compressed and/or * skippable frames * @return : decompressed size of the frames contained */ unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize) { unsigned long long totalDstSize = 0; while (srcSize >= ZSTD_frameHeaderSize_prefix) { const U32 magicNumber = MEM_readLE32(src); if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { size_t skippableSize; if (srcSize < ZSTD_skippableHeaderSize) return ERROR(srcSize_wrong); skippableSize = MEM_readLE32((const BYTE *)src + 4) + ZSTD_skippableHeaderSize; if (srcSize < skippableSize) { return ZSTD_CONTENTSIZE_ERROR; } src = (const BYTE *)src + skippableSize; srcSize -= skippableSize; continue; } { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret; /* check for overflow */ if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR; totalDstSize += ret; } { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize); if (ZSTD_isError(frameSrcSize)) { return ZSTD_CONTENTSIZE_ERROR; } src = (const BYTE *)src + frameSrcSize; srcSize -= frameSrcSize; } } if (srcSize) { return ZSTD_CONTENTSIZE_ERROR; } return totalDstSize; } /** ZSTD_getDecompressedSize() : * compatible with legacy mode * @return : decompressed size if known, 0 otherwise note : 0 can mean any of the following : - decompressed size is not present within frame header - frame header unknown / not supported - frame header not complete (`srcSize` too small) */ unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize) { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); return ret >= ZSTD_CONTENTSIZE_ERROR ? 0 : ret; } /** ZSTD_decodeFrameHeader() : * `headerSize` must be the size provided by ZSTD_frameHeaderSize(). * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize) { size_t const result = ZSTD_getFrameHeader(&(dctx->fParams), src, headerSize); if (ZSTD_isError(result)) return result; /* invalid header */ if (result>0) return ERROR(srcSize_wrong); /* headerSize too small */ if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID)) return ERROR(dictionary_wrong); if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0); return 0; } /*! ZSTD_getcBlockSize() : * Provides the size of compressed block from block header `src` */ size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) { if (srcSize < ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); { U32 const cBlockHeader = MEM_readLE24(src); U32 const cSize = cBlockHeader >> 3; bpPtr->lastBlock = cBlockHeader & 1; bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3); bpPtr->origSize = cSize; /* only useful for RLE */ if (bpPtr->blockType == bt_rle) return 1; if (bpPtr->blockType == bt_reserved) return ERROR(corruption_detected); return cSize; } } static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall); memcpy(dst, src, srcSize); return srcSize; } static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, size_t regenSize) { if (srcSize != 1) return ERROR(srcSize_wrong); if (regenSize > dstCapacity) return ERROR(dstSize_tooSmall); memset(dst, *(const BYTE*)src, regenSize); return regenSize; } /*! ZSTD_decodeLiteralsBlock() : @return : nb of bytes read from src (< srcSize ) */ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */ { if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected); { const BYTE* const istart = (const BYTE*) src; symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3); switch(litEncType) { case set_repeat: if (dctx->litEntropy==0) return ERROR(dictionary_corrupted); /* fall-through */ case set_compressed: if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */ { size_t lhSize, litSize, litCSize; U32 singleStream=0; U32 const lhlCode = (istart[0] >> 2) & 3; U32 const lhc = MEM_readLE32(istart); switch(lhlCode) { case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */ /* 2 - 2 - 10 - 10 */ singleStream = !lhlCode; lhSize = 3; litSize = (lhc >> 4) & 0x3FF; litCSize = (lhc >> 14) & 0x3FF; break; case 2: /* 2 - 2 - 14 - 14 */ lhSize = 4; litSize = (lhc >> 4) & 0x3FFF; litCSize = lhc >> 18; break; case 3: /* 2 - 2 - 18 - 18 */ lhSize = 5; litSize = (lhc >> 4) & 0x3FFFF; litCSize = (lhc >> 22) + (istart[4] << 10); break; } if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected); if (litCSize + lhSize > srcSize) return ERROR(corruption_detected); if (HUF_isError((litEncType==set_repeat) ? ( singleStream ? HUF_decompress1X_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr) : HUF_decompress4X_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr) ) : ( singleStream ? HUF_decompress1X2_DCtx_wksp(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->entropy.workspace, sizeof(dctx->entropy.workspace)) : HUF_decompress4X_hufOnly_wksp(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->entropy.workspace, sizeof(dctx->entropy.workspace))))) return ERROR(corruption_detected); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; dctx->litEntropy = 1; if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable; memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); return litCSize + lhSize; } case set_basic: { size_t litSize, lhSize; U32 const lhlCode = ((istart[0]) >> 2) & 3; switch(lhlCode) { case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ lhSize = 1; litSize = istart[0] >> 3; break; case 1: lhSize = 2; litSize = MEM_readLE16(istart) >> 4; break; case 3: lhSize = 3; litSize = MEM_readLE24(istart) >> 4; break; } if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ if (litSize+lhSize > srcSize) return ERROR(corruption_detected); memcpy(dctx->litBuffer, istart+lhSize, litSize); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); return lhSize+litSize; } /* direct reference into compressed stream */ dctx->litPtr = istart+lhSize; dctx->litSize = litSize; return lhSize+litSize; } case set_rle: { U32 const lhlCode = ((istart[0]) >> 2) & 3; size_t litSize, lhSize; switch(lhlCode) { case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ lhSize = 1; litSize = istart[0] >> 3; break; case 1: lhSize = 2; litSize = MEM_readLE16(istart) >> 4; break; case 3: lhSize = 3; litSize = MEM_readLE24(istart) >> 4; if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */ break; } if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected); memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH); dctx->litPtr = dctx->litBuffer; dctx->litSize = litSize; return lhSize+1; } default: return ERROR(corruption_detected); /* impossible */ } } } typedef union { FSE_decode_t realData; U32 alignedBy4; } FSE_decode_t4; /* Default FSE distribution table for Literal Lengths */ static const FSE_decode_t4 LL_defaultDTable[(1< max) return ERROR(corruption_detected); FSE_buildDTable_rle(DTableSpace, *(const BYTE*)src); *DTablePtr = DTableSpace; return 1; case set_basic : *DTablePtr = (const FSE_DTable*)tmpPtr; return 0; case set_repeat: if (!flagRepeatTable) return ERROR(corruption_detected); return 0; default : /* impossible */ case set_compressed : { U32 tableLog; S16 norm[MaxSeq+1]; size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize); if (FSE_isError(headerSize)) return ERROR(corruption_detected); if (tableLog > maxLog) return ERROR(corruption_detected); FSE_buildDTable(DTableSpace, norm, max, tableLog); *DTablePtr = DTableSpace; return headerSize; } } } size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, const void* src, size_t srcSize) { const BYTE* const istart = (const BYTE* const)src; const BYTE* const iend = istart + srcSize; const BYTE* ip = istart; DEBUGLOG(5, "ZSTD_decodeSeqHeaders"); /* check */ if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong); /* SeqHead */ { int nbSeq = *ip++; if (!nbSeq) { *nbSeqPtr=0; return 1; } if (nbSeq > 0x7F) { if (nbSeq == 0xFF) { if (ip+2 > iend) return ERROR(srcSize_wrong); nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2; } else { if (ip >= iend) return ERROR(srcSize_wrong); nbSeq = ((nbSeq-0x80)<<8) + *ip++; } } *nbSeqPtr = nbSeq; } /* FSE table descriptors */ if (ip+4 > iend) return ERROR(srcSize_wrong); /* minimum possible size */ { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6); symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3); symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3); ip++; /* Build DTables */ { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultDTable, dctx->fseEntropy); if (ZSTD_isError(llhSize)) return ERROR(corruption_detected); ip += llhSize; } { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr, OFtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultDTable, dctx->fseEntropy); if (ZSTD_isError(ofhSize)) return ERROR(corruption_detected); ip += ofhSize; } { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultDTable, dctx->fseEntropy); if (ZSTD_isError(mlhSize)) return ERROR(corruption_detected); ip += mlhSize; } } return ip-istart; } typedef struct { size_t litLength; size_t matchLength; size_t offset; const BYTE* match; } seq_t; typedef struct { BIT_DStream_t DStream; FSE_DState_t stateLL; FSE_DState_t stateOffb; FSE_DState_t stateML; size_t prevOffset[ZSTD_REP_NUM]; const BYTE* base; size_t pos; uPtrDiff gotoDict; } seqState_t; FORCE_NOINLINE size_t ZSTD_execSequenceLast7(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; /* check */ if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */ if (oLitEnd <= oend_w) return ERROR(GENERIC); /* Precondition */ /* copy literals */ if (op < oend_w) { ZSTD_wildcopy(op, *litPtr, oend_w - op); *litPtr += oend_w - op; op = oend_w; } while (op < oLitEnd) *op++ = *(*litPtr)++; /* copy Match */ if (sequence.offset > (size_t)(oLitEnd - base)) { /* offset beyond prefix */ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected); match = dictEnd - (base-match); if (match + sequence.matchLength <= dictEnd) { memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = base; } } while (op < oMatchEnd) *op++ = *match++; return sequenceLength; } static seq_t ZSTD_decodeSequence(seqState_t* seqState) { seq_t seq; U32 const llCode = FSE_peekSymbol(&seqState->stateLL); U32 const mlCode = FSE_peekSymbol(&seqState->stateML); U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb); /* <= maxOff, by table construction */ U32 const llBits = LL_bits[llCode]; U32 const mlBits = ML_bits[mlCode]; U32 const ofBits = ofCode; U32 const totalBits = llBits+mlBits+ofBits; static const U32 LL_base[MaxLL+1] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000 }; static const U32 ML_base[MaxML+1] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; static const U32 OF_base[MaxOff+1] = { 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD }; /* sequence */ { size_t offset; if (!ofCode) offset = 0; else { offset = OF_base[ofCode] + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); } if (ofCode <= 1) { offset += (llCode==0); if (offset) { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset = temp; } else { offset = seqState->prevOffset[0]; } } else { seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset; } seq.offset = offset; } seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */ if (MEM_32bits() && (mlBits+llBits>24)) BIT_reloadDStream(&seqState->DStream); seq.litLength = LL_base[llCode] + ((llCode>15) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */ if ( MEM_32bits() || (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BIT_reloadDStream(&seqState->DStream); DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u", (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); /* ANS state update */ FSE_updateState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */ FSE_updateState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ FSE_updateState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */ return seq; } FORCE_INLINE size_t ZSTD_execSequence(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; /* check */ if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */ if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, base, vBase, dictEnd); /* copy Literals */ ZSTD_copy8(op, *litPtr); if (sequence.litLength > 8) ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */ op = oLitEnd; *litPtr = iLitEnd; /* update for next sequence */ /* copy Match */ if (sequence.offset > (size_t)(oLitEnd - base)) { /* offset beyond prefix -> go into extDict */ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected); match = dictEnd + (match - base); if (match + sequence.matchLength <= dictEnd) { memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = base; if (op > oend_w || sequence.matchLength < MINMATCH) { U32 i; for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i]; return sequenceLength; } } } /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */ /* match within prefix */ if (sequence.offset < 8) { /* close range match, overlap */ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ int const sub2 = dec64table[sequence.offset]; op[0] = match[0]; op[1] = match[1]; op[2] = match[2]; op[3] = match[3]; match += dec32table[sequence.offset]; ZSTD_copy4(op+4, match); match -= sub2; } else { ZSTD_copy8(op, match); } op += 8; match += 8; if (oMatchEnd > oend-(16-MINMATCH)) { if (op < oend_w) { ZSTD_wildcopy(op, match, oend_w - op); match += oend_w - op; op = oend_w; } while (op < oMatchEnd) *op++ = *match++; } else { ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ } return sequenceLength; } static size_t ZSTD_decompressSequences( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE* const)dst; BYTE* const oend = ostart + maxDstSize; BYTE* op = ostart; const BYTE* litPtr = dctx->litPtr; const BYTE* const litEnd = litPtr + dctx->litSize; const BYTE* const base = (const BYTE*) (dctx->base); const BYTE* const vBase = (const BYTE*) (dctx->vBase); const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); int nbSeq; DEBUGLOG(5, "ZSTD_decompressSequences"); /* Build Decoding Tables */ { size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize); DEBUGLOG(5, "ZSTD_decodeSeqHeaders: size=%u, nbSeq=%i", (U32)seqHSize, nbSeq); if (ZSTD_isError(seqHSize)) return seqHSize; ip += seqHSize; } /* Regen sequences */ if (nbSeq) { seqState_t seqState; dctx->fseEntropy = 1; { U32 i; for (i=0; ientropy.rep[i]; } CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected); FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) { nbSeq--; { seq_t const sequence = ZSTD_decodeSequence(&seqState); size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd); DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); if (ZSTD_isError(oneSeqSize)) return oneSeqSize; op += oneSeqSize; } } /* check if reached exact end */ DEBUGLOG(5, "after decode loop, remaining nbSeq : %i", nbSeq); if (nbSeq) return ERROR(corruption_detected); /* save reps for next block */ { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } } /* last literal segment */ { size_t const lastLLSize = litEnd - litPtr; if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall); memcpy(op, litPtr, lastLLSize); op += lastLLSize; } return op-ostart; } FORCE_INLINE seq_t ZSTD_decodeSequenceLong_generic(seqState_t* seqState, int const longOffsets) { seq_t seq; U32 const llCode = FSE_peekSymbol(&seqState->stateLL); U32 const mlCode = FSE_peekSymbol(&seqState->stateML); U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb); /* <= maxOff, by table construction */ U32 const llBits = LL_bits[llCode]; U32 const mlBits = ML_bits[mlCode]; U32 const ofBits = ofCode; U32 const totalBits = llBits+mlBits+ofBits; static const U32 LL_base[MaxLL+1] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000 }; static const U32 ML_base[MaxML+1] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; static const U32 OF_base[MaxOff+1] = { 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD }; /* sequence */ { size_t offset; if (!ofCode) offset = 0; else { if (longOffsets) { int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN); offset = OF_base[ofCode] + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits); if (MEM_32bits() || extraBits) BIT_reloadDStream(&seqState->DStream); if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits); } else { offset = OF_base[ofCode] + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); } } if (ofCode <= 1) { offset += (llCode==0); if (offset) { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset = temp; } else { offset = seqState->prevOffset[0]; } } else { seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset; } seq.offset = offset; } seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */ if (MEM_32bits() && (mlBits+llBits>24)) BIT_reloadDStream(&seqState->DStream); seq.litLength = LL_base[llCode] + ((llCode>15) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */ if (MEM_32bits() || (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BIT_reloadDStream(&seqState->DStream); { size_t const pos = seqState->pos + seq.litLength; seq.match = seqState->base + pos - seq.offset; /* single memory segment */ if (seq.offset > pos) seq.match += seqState->gotoDict; /* separate memory segment */ seqState->pos = pos + seq.matchLength; } /* ANS state update */ FSE_updateState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */ FSE_updateState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ FSE_updateState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */ return seq; } static seq_t ZSTD_decodeSequenceLong(seqState_t* seqState, unsigned const windowSize) { if (ZSTD_highbit32(windowSize) > STREAM_ACCUMULATOR_MIN) { return ZSTD_decodeSequenceLong_generic(seqState, 1); } else { return ZSTD_decodeSequenceLong_generic(seqState, 0); } } FORCE_INLINE size_t ZSTD_execSequenceLong(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit, const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = sequence.match; /* check */ #if 1 if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */ if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, base, vBase, dictEnd); #endif /* copy Literals */ ZSTD_copy8(op, *litPtr); if (sequence.litLength > 8) ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */ op = oLitEnd; *litPtr = iLitEnd; /* update for next sequence */ /* copy Match */ #if 1 if (sequence.offset > (size_t)(oLitEnd - base)) { /* offset beyond prefix */ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected); if (match + sequence.matchLength <= dictEnd) { memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = base; if (op > oend_w || sequence.matchLength < MINMATCH) { U32 i; for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i]; return sequenceLength; } } } /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */ #endif /* match within prefix */ if (sequence.offset < 8) { /* close range match, overlap */ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ int const sub2 = dec64table[sequence.offset]; op[0] = match[0]; op[1] = match[1]; op[2] = match[2]; op[3] = match[3]; match += dec32table[sequence.offset]; ZSTD_copy4(op+4, match); match -= sub2; } else { ZSTD_copy8(op, match); } op += 8; match += 8; if (oMatchEnd > oend-(16-MINMATCH)) { if (op < oend_w) { ZSTD_wildcopy(op, match, oend_w - op); match += oend_w - op; op = oend_w; } while (op < oMatchEnd) *op++ = *match++; } else { ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ } return sequenceLength; } static size_t ZSTD_decompressSequencesLong( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE* const)dst; BYTE* const oend = ostart + maxDstSize; BYTE* op = ostart; const BYTE* litPtr = dctx->litPtr; const BYTE* const litEnd = litPtr + dctx->litSize; const BYTE* const base = (const BYTE*) (dctx->base); const BYTE* const vBase = (const BYTE*) (dctx->vBase); const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); unsigned const windowSize32 = (unsigned)dctx->fParams.windowSize; int nbSeq; /* Build Decoding Tables */ { size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize); if (ZSTD_isError(seqHSize)) return seqHSize; ip += seqHSize; } /* Regen sequences */ if (nbSeq) { #define STORED_SEQS 4 #define STOSEQ_MASK (STORED_SEQS-1) #define ADVANCED_SEQS 4 seq_t sequences[STORED_SEQS]; int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS); seqState_t seqState; int seqNb; dctx->fseEntropy = 1; { U32 i; for (i=0; ientropy.rep[i]; } seqState.base = base; seqState.pos = (size_t)(op-base); seqState.gotoDict = (uPtrDiff)dictEnd - (uPtrDiff)base; /* cast to avoid undefined behaviour */ CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected); FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); /* prepare in advance */ for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && seqNbentropy.rep[i] = (U32)(seqState.prevOffset[i]); } } /* last literal segment */ { size_t const lastLLSize = litEnd - litPtr; if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall); memcpy(op, litPtr, lastLLSize); op += lastLLSize; } return op-ostart; } static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { /* blockType == blockCompressed */ const BYTE* ip = (const BYTE*)src; DEBUGLOG(5, "ZSTD_decompressBlock_internal"); if (srcSize >= ZSTD_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* Decode literals section */ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize); DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize); if (ZSTD_isError(litCSize)) return litCSize; ip += litCSize; srcSize -= litCSize; } if (sizeof(size_t) > 4) /* do not enable prefetching on 32-bits x86, as it's performance detrimental */ /* likely because of register pressure */ /* if that's the correct cause, then 32-bits ARM should be affected differently */ /* it would be good to test this on ARM real hardware, to see if prefetch version improves speed */ if (dctx->fParams.windowSize > (1<<23)) return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize); return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize); } static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst) { if (dst != dctx->previousDstEnd) { /* not contiguous */ dctx->dictEnd = dctx->previousDstEnd; dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); dctx->base = dst; dctx->previousDstEnd = dst; } } size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t dSize; ZSTD_checkContinuity(dctx, dst); dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize); dctx->previousDstEnd = (char*)dst + dSize; return dSize; } /** ZSTD_insertBlock() : insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ ZSTDLIB_API size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize) { ZSTD_checkContinuity(dctx, blockStart); dctx->previousDstEnd = (const char*)blockStart + blockSize; return blockSize; } size_t ZSTD_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length) { if (length > dstCapacity) return ERROR(dstSize_tooSmall); memset(dst, byte, length); return length; } /** ZSTD_findFrameCompressedSize() : * compatible with legacy mode * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame * `srcSize` must be at least as large as the frame contained * @return : the compressed size of the frame starting at `src` */ size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) { #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(src, srcSize)) return ZSTD_findFrameCompressedSizeLegacy(src, srcSize); #endif if (srcSize >= ZSTD_skippableHeaderSize && (MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { return ZSTD_skippableHeaderSize + MEM_readLE32((const BYTE*)src + 4); } else { const BYTE* ip = (const BYTE*)src; const BYTE* const ipstart = ip; size_t remainingSize = srcSize; ZSTD_frameHeader fParams; size_t const headerSize = ZSTD_frameHeaderSize(ip, remainingSize); if (ZSTD_isError(headerSize)) return headerSize; /* Frame Header */ { size_t const ret = ZSTD_getFrameHeader(&fParams, ip, remainingSize); if (ZSTD_isError(ret)) return ret; if (ret > 0) return ERROR(srcSize_wrong); } ip += headerSize; remainingSize -= headerSize; /* Loop on each block */ while (1) { blockProperties_t blockProperties; size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); if (ZSTD_isError(cBlockSize)) return cBlockSize; if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) return ERROR(srcSize_wrong); ip += ZSTD_blockHeaderSize + cBlockSize; remainingSize -= ZSTD_blockHeaderSize + cBlockSize; if (blockProperties.lastBlock) break; } if (fParams.checksumFlag) { /* Frame content checksum */ if (remainingSize < 4) return ERROR(srcSize_wrong); ip += 4; remainingSize -= 4; } return ip - ipstart; } } /*! ZSTD_decompressFrame() : * @dctx must be properly initialized */ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void** srcPtr, size_t *srcSizePtr) { const BYTE* ip = (const BYTE*)(*srcPtr); BYTE* const ostart = (BYTE* const)dst; BYTE* const oend = ostart + dstCapacity; BYTE* op = ostart; size_t remainingSize = *srcSizePtr; /* check */ if (remainingSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); /* Frame Header */ { size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_frameHeaderSize_prefix); if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; if (remainingSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); CHECK_F(ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize)); ip += frameHeaderSize; remainingSize -= frameHeaderSize; } /* Loop on each block */ while (1) { size_t decodedSize; blockProperties_t blockProperties; size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); if (ZSTD_isError(cBlockSize)) return cBlockSize; ip += ZSTD_blockHeaderSize; remainingSize -= ZSTD_blockHeaderSize; if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); switch(blockProperties.blockType) { case bt_compressed: decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize); break; case bt_raw : decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize); break; case bt_rle : decodedSize = ZSTD_generateNxBytes(op, oend-op, *ip, blockProperties.origSize); break; case bt_reserved : default: return ERROR(corruption_detected); } if (ZSTD_isError(decodedSize)) return decodedSize; if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, op, decodedSize); op += decodedSize; ip += cBlockSize; remainingSize -= cBlockSize; if (blockProperties.lastBlock) break; } if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */ U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState); U32 checkRead; if (remainingSize<4) return ERROR(checksum_wrong); checkRead = MEM_readLE32(ip); if (checkRead != checkCalc) return ERROR(checksum_wrong); ip += 4; remainingSize -= 4; } /* Allow caller to get size read */ *srcPtr = ip; *srcSizePtr = remainingSize; return op-ostart; } static const void* ZSTD_DDictDictContent(const ZSTD_DDict* ddict); static size_t ZSTD_DDictDictSize(const ZSTD_DDict* ddict); static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void *dict, size_t dictSize, const ZSTD_DDict* ddict) { void* const dststart = dst; if (ddict) { if (dict) { /* programmer error, these two cases should be mutually exclusive */ return ERROR(GENERIC); } dict = ZSTD_DDictDictContent(ddict); dictSize = ZSTD_DDictDictSize(ddict); } while (srcSize >= ZSTD_frameHeaderSize_prefix) { U32 magicNumber; #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) if (ZSTD_isLegacy(src, srcSize)) { size_t decodedSize; size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize); if (ZSTD_isError(frameSize)) return frameSize; /* legacy support is incompatible with static dctx */ if (dctx->staticSize) return ERROR(memory_allocation); decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize); dst = (BYTE*)dst + decodedSize; dstCapacity -= decodedSize; src = (const BYTE*)src + frameSize; srcSize -= frameSize; continue; } #endif magicNumber = MEM_readLE32(src); if (magicNumber != ZSTD_MAGICNUMBER) { if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { size_t skippableSize; if (srcSize < ZSTD_skippableHeaderSize) return ERROR(srcSize_wrong); skippableSize = MEM_readLE32((const BYTE *)src + 4) + ZSTD_skippableHeaderSize; if (srcSize < skippableSize) { return ERROR(srcSize_wrong); } src = (const BYTE *)src + skippableSize; srcSize -= skippableSize; continue; } else { return ERROR(prefix_unknown); } } if (ddict) { /* we were called from ZSTD_decompress_usingDDict */ CHECK_F(ZSTD_decompressBegin_usingDDict(dctx, ddict)); } else { /* this will initialize correctly with no dict if dict == NULL, so * use this in all cases but ddict */ CHECK_F(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize)); } ZSTD_checkContinuity(dctx, dst); { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, &src, &srcSize); if (ZSTD_isError(res)) return res; /* don't need to bounds check this, ZSTD_decompressFrame will have * already */ dst = (BYTE*)dst + res; dstCapacity -= res; } } if (srcSize) return ERROR(srcSize_wrong); /* input not entirely consumed */ return (BYTE*)dst - (BYTE*)dststart; } size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize) { return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL); } size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0); } size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) size_t regenSize; ZSTD_DCtx* const dctx = ZSTD_createDCtx(); if (dctx==NULL) return ERROR(memory_allocation); regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); ZSTD_freeDCtx(dctx); return regenSize; #else /* stack mode */ ZSTD_DCtx dctx; return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); #endif } /*-************************************** * Advanced Streaming Decompression API * Bufferless and synchronous ****************************************/ size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { switch(dctx->stage) { default: /* should not happen */ assert(0); case ZSTDds_getFrameHeaderSize: case ZSTDds_decodeFrameHeader: return ZSTDnit_frameHeader; case ZSTDds_decodeBlockHeader: return ZSTDnit_blockHeader; case ZSTDds_decompressBlock: return ZSTDnit_block; case ZSTDds_decompressLastBlock: return ZSTDnit_lastBlock; case ZSTDds_checkChecksum: return ZSTDnit_checksum; case ZSTDds_decodeSkippableHeader: case ZSTDds_skipFrame: return ZSTDnit_skippableFrame; } } static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } /** ZSTD_decompressContinue() : * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress()) * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) * or an error code, which can be tested using ZSTD_isError() */ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_decompressContinue"); /* Sanity check */ if (srcSize != dctx->expected) return ERROR(srcSize_wrong); /* unauthorized */ if (dstCapacity) ZSTD_checkContinuity(dctx, dst); switch (dctx->stage) { case ZSTDds_getFrameHeaderSize : if (srcSize != ZSTD_frameHeaderSize_prefix) return ERROR(srcSize_wrong); /* unauthorized */ assert(src != NULL); if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix); dctx->expected = ZSTD_skippableHeaderSize - ZSTD_frameHeaderSize_prefix; /* magic number + skippable frame length */ dctx->stage = ZSTDds_decodeSkippableHeader; return 0; } dctx->headerSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_prefix); if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix); if (dctx->headerSize > ZSTD_frameHeaderSize_prefix) { dctx->expected = dctx->headerSize - ZSTD_frameHeaderSize_prefix; dctx->stage = ZSTDds_decodeFrameHeader; return 0; } dctx->expected = 0; /* not necessary to copy more */ case ZSTDds_decodeFrameHeader: assert(src != NULL); memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected); CHECK_F(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize)); dctx->expected = ZSTD_blockHeaderSize; dctx->stage = ZSTDds_decodeBlockHeader; return 0; case ZSTDds_decodeBlockHeader: { blockProperties_t bp; size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); if (ZSTD_isError(cBlockSize)) return cBlockSize; dctx->expected = cBlockSize; dctx->bType = bp.blockType; dctx->rleSize = bp.origSize; if (cBlockSize) { dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock; return 0; } /* empty block */ if (bp.lastBlock) { if (dctx->fParams.checksumFlag) { dctx->expected = 4; dctx->stage = ZSTDds_checkChecksum; } else { dctx->expected = 0; /* end of frame */ dctx->stage = ZSTDds_getFrameHeaderSize; } } else { dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */ dctx->stage = ZSTDds_decodeBlockHeader; } return 0; } case ZSTDds_decompressLastBlock: case ZSTDds_decompressBlock: DEBUGLOG(5, "case ZSTDds_decompressBlock"); { size_t rSize; switch(dctx->bType) { case bt_compressed: DEBUGLOG(5, "case bt_compressed"); rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize); break; case bt_raw : rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); break; case bt_rle : rSize = ZSTD_setRleBlock(dst, dstCapacity, src, srcSize, dctx->rleSize); break; case bt_reserved : /* should never happen */ default: return ERROR(corruption_detected); } if (ZSTD_isError(rSize)) return rSize; if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize); if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */ if (dctx->fParams.checksumFlag) { /* another round for frame checksum */ dctx->expected = 4; dctx->stage = ZSTDds_checkChecksum; } else { dctx->expected = 0; /* ends here */ dctx->stage = ZSTDds_getFrameHeaderSize; } } else { dctx->stage = ZSTDds_decodeBlockHeader; dctx->expected = ZSTD_blockHeaderSize; dctx->previousDstEnd = (char*)dst + rSize; } return rSize; } case ZSTDds_checkChecksum: { U32 const h32 = (U32)XXH64_digest(&dctx->xxhState); U32 const check32 = MEM_readLE32(src); /* srcSize == 4, guaranteed by dctx->expected */ if (check32 != h32) return ERROR(checksum_wrong); dctx->expected = 0; dctx->stage = ZSTDds_getFrameHeaderSize; return 0; } case ZSTDds_decodeSkippableHeader: { assert(src != NULL); memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected); dctx->expected = MEM_readLE32(dctx->headerBuffer + 4); dctx->stage = ZSTDds_skipFrame; return 0; } case ZSTDds_skipFrame: { dctx->expected = 0; dctx->stage = ZSTDds_getFrameHeaderSize; return 0; } default: return ERROR(GENERIC); /* impossible */ } } static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { dctx->dictEnd = dctx->previousDstEnd; dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); dctx->base = dict; dctx->previousDstEnd = (const char*)dict + dictSize; return 0; } /* ZSTD_loadEntropy() : * dict : must point at beginning of a valid zstd dictionary * @return : size of entropy tables read */ static size_t ZSTD_loadEntropy(ZSTD_entropyTables_t* entropy, const void* const dict, size_t const dictSize) { const BYTE* dictPtr = (const BYTE*)dict; const BYTE* const dictEnd = dictPtr + dictSize; if (dictSize <= 8) return ERROR(dictionary_corrupted); dictPtr += 8; /* skip header = magic + dictID */ { size_t const hSize = HUF_readDTableX4_wksp( entropy->hufTable, dictPtr, dictEnd - dictPtr, entropy->workspace, sizeof(entropy->workspace)); if (HUF_isError(hSize)) return ERROR(dictionary_corrupted); dictPtr += hSize; } { short offcodeNCount[MaxOff+1]; U32 offcodeMaxValue = MaxOff, offcodeLog; size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted); if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted); CHECK_E(FSE_buildDTable(entropy->OFTable, offcodeNCount, offcodeMaxValue, offcodeLog), dictionary_corrupted); dictPtr += offcodeHeaderSize; } { short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog; size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted); if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted); CHECK_E(FSE_buildDTable(entropy->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog), dictionary_corrupted); dictPtr += matchlengthHeaderSize; } { short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog; size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted); if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted); CHECK_E(FSE_buildDTable(entropy->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog), dictionary_corrupted); dictPtr += litlengthHeaderSize; } if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted); { int i; size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12)); for (i=0; i<3; i++) { U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4; if (rep==0 || rep >= dictContentSize) return ERROR(dictionary_corrupted); entropy->rep[i] = rep; } } return dictPtr - (const BYTE*)dict; } static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize); { U32 const magic = MEM_readLE32(dict); if (magic != ZSTD_MAGIC_DICTIONARY) { return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */ } } dctx->dictID = MEM_readLE32((const char*)dict + 4); /* load entropy tables */ { size_t const eSize = ZSTD_loadEntropy(&dctx->entropy, dict, dictSize); if (ZSTD_isError(eSize)) return ERROR(dictionary_corrupted); dict = (const char*)dict + eSize; dictSize -= eSize; } dctx->litEntropy = dctx->fseEntropy = 1; /* reference dictionary content */ return ZSTD_refDictContent(dctx, dict, dictSize); } size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { CHECK_F(ZSTD_decompressBegin(dctx)); if (dict && dictSize) CHECK_E(ZSTD_decompress_insertDictionary(dctx, dict, dictSize), dictionary_corrupted); return 0; } /* ====== ZSTD_DDict ====== */ struct ZSTD_DDict_s { void* dictBuffer; const void* dictContent; size_t dictSize; ZSTD_entropyTables_t entropy; U32 dictID; U32 entropyPresent; ZSTD_customMem cMem; }; /* typedef'd to ZSTD_DDict within "zstd.h" */ static const void* ZSTD_DDictDictContent(const ZSTD_DDict* ddict) { return ddict->dictContent; } static size_t ZSTD_DDictDictSize(const ZSTD_DDict* ddict) { return ddict->dictSize; } size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dstDCtx, const ZSTD_DDict* ddict) { CHECK_F(ZSTD_decompressBegin(dstDCtx)); if (ddict) { /* support begin on NULL */ dstDCtx->dictID = ddict->dictID; dstDCtx->base = ddict->dictContent; dstDCtx->vBase = ddict->dictContent; dstDCtx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize; dstDCtx->previousDstEnd = dstDCtx->dictEnd; if (ddict->entropyPresent) { dstDCtx->litEntropy = 1; dstDCtx->fseEntropy = 1; dstDCtx->LLTptr = ddict->entropy.LLTable; dstDCtx->MLTptr = ddict->entropy.MLTable; dstDCtx->OFTptr = ddict->entropy.OFTable; dstDCtx->HUFptr = ddict->entropy.hufTable; dstDCtx->entropy.rep[0] = ddict->entropy.rep[0]; dstDCtx->entropy.rep[1] = ddict->entropy.rep[1]; dstDCtx->entropy.rep[2] = ddict->entropy.rep[2]; } else { dstDCtx->litEntropy = 0; dstDCtx->fseEntropy = 0; } } return 0; } static size_t ZSTD_loadEntropy_inDDict(ZSTD_DDict* ddict) { ddict->dictID = 0; ddict->entropyPresent = 0; if (ddict->dictSize < 8) return 0; { U32 const magic = MEM_readLE32(ddict->dictContent); if (magic != ZSTD_MAGIC_DICTIONARY) return 0; /* pure content mode */ } ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + 4); /* load entropy tables */ CHECK_E( ZSTD_loadEntropy(&ddict->entropy, ddict->dictContent, ddict->dictSize), dictionary_corrupted ); ddict->entropyPresent = 1; return 0; } static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict, const void* dict, size_t dictSize, unsigned byReference) { if ((byReference) || (!dict) || (!dictSize)) { ddict->dictBuffer = NULL; ddict->dictContent = dict; } else { void* const internalBuffer = ZSTD_malloc(dictSize, ddict->cMem); ddict->dictBuffer = internalBuffer; ddict->dictContent = internalBuffer; if (!internalBuffer) return ERROR(memory_allocation); memcpy(internalBuffer, dict, dictSize); } ddict->dictSize = dictSize; ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ /* parse dictionary content */ CHECK_F( ZSTD_loadEntropy_inDDict(ddict) ); return 0; } ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, unsigned byReference, ZSTD_customMem customMem) { if (!customMem.customAlloc ^ !customMem.customFree) return NULL; { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_malloc(sizeof(ZSTD_DDict), customMem); if (!ddict) return NULL; ddict->cMem = customMem; if (ZSTD_isError( ZSTD_initDDict_internal(ddict, dict, dictSize, byReference) )) { ZSTD_freeDDict(ddict); return NULL; } return ddict; } } /*! ZSTD_createDDict() : * Create a digested dictionary, to start decompression without startup delay. * `dict` content is copied inside DDict. * Consequently, `dict` can be released after `ZSTD_DDict` creation */ ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize) { ZSTD_customMem const allocator = { NULL, NULL, NULL }; return ZSTD_createDDict_advanced(dict, dictSize, 0, allocator); } /*! ZSTD_createDDict_byReference() : * Create a digested dictionary, to start decompression without startup delay. * Dictionary content is simply referenced, it will be accessed during decompression. * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */ ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize) { ZSTD_customMem const allocator = { NULL, NULL, NULL }; return ZSTD_createDDict_advanced(dictBuffer, dictSize, 1, allocator); } ZSTD_DDict* ZSTD_initStaticDDict(void* workspace, size_t workspaceSize, const void* dict, size_t dictSize, unsigned byReference) { size_t const neededSpace = sizeof(ZSTD_DDict) + (byReference ? 0 : dictSize); ZSTD_DDict* const ddict = (ZSTD_DDict*)workspace; assert(workspace != NULL); assert(dict != NULL); if ((size_t)workspace & 7) return NULL; /* 8-aligned */ if (workspaceSize < neededSpace) return NULL; if (!byReference) { memcpy(ddict+1, dict, dictSize); /* local copy */ dict = ddict+1; } if (ZSTD_isError( ZSTD_initDDict_internal(ddict, dict, dictSize, 1 /* byRef */) )) return NULL; return ddict; } size_t ZSTD_freeDDict(ZSTD_DDict* ddict) { if (ddict==NULL) return 0; /* support free on NULL */ { ZSTD_customMem const cMem = ddict->cMem; ZSTD_free(ddict->dictBuffer, cMem); ZSTD_free(ddict, cMem); return 0; } } /*! ZSTD_estimateDDictSize() : * Estimate amount of memory that will be needed to create a dictionary for decompression. * Note : dictionary created "byReference" are smaller */ size_t ZSTD_estimateDDictSize(size_t dictSize, unsigned byReference) { return sizeof(ZSTD_DDict) + (byReference ? 0 : dictSize); } size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict) { if (ddict==NULL) return 0; /* support sizeof on NULL */ return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ; } /*! ZSTD_getDictID_fromDict() : * Provides the dictID stored within dictionary. * if @return == 0, the dictionary is not conformant with Zstandard specification. * It can still be loaded, but as a content-only dictionary. */ unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize) { if (dictSize < 8) return 0; if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0; return MEM_readLE32((const char*)dict + 4); } /*! ZSTD_getDictID_fromDDict() : * Provides the dictID of the dictionary loaded into `ddict`. * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict) { if (ddict==NULL) return 0; return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize); } /*! ZSTD_getDictID_fromFrame() : * Provides the dictID required to decompresse frame stored within `src`. * If @return == 0, the dictID could not be decoded. * This could for one of the following reasons : * - The frame does not require a dictionary (most common case). * - The frame was built with dictID intentionally removed. * Needed dictionary is a hidden information. * Note : this use case also happens when using a non-conformant dictionary. * - `srcSize` is too small, and as a result, frame header could not be decoded. * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`. * - This is not a Zstandard frame. * When identifying the exact failure cause, it's possible to use * ZSTD_getFrameHeader(), which will provide a more precise error code. */ unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize) { ZSTD_frameHeader zfp = { 0 , 0 , 0 , 0 }; size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize); if (ZSTD_isError(hError)) return 0; return zfp.dictID; } /*! ZSTD_decompress_usingDDict() : * Decompression using a pre-digested Dictionary * Use dictionary without significant overhead. */ size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_DDict* ddict) { /* pass content and size in case legacy frames are encountered */ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, NULL, 0, ddict); } /*===================================== * Streaming decompression *====================================*/ ZSTD_DStream* ZSTD_createDStream(void) { return ZSTD_createDStream_advanced(ZSTD_defaultCMem); } ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) { return ZSTD_initStaticDCtx(workspace, workspaceSize); } ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) { return ZSTD_createDCtx_advanced(customMem); } size_t ZSTD_freeDStream(ZSTD_DStream* zds) { return ZSTD_freeDCtx(zds); } /* *** Initialization *** */ size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; } size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; } size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize) { zds->streamStage = zdss_loadHeader; zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; ZSTD_freeDDict(zds->ddictLocal); if (dict && dictSize >= 8) { zds->ddictLocal = ZSTD_createDDict(dict, dictSize); if (zds->ddictLocal == NULL) return ERROR(memory_allocation); } else zds->ddictLocal = NULL; zds->ddict = zds->ddictLocal; zds->legacyVersion = 0; zds->hostageByte = 0; return ZSTD_frameHeaderSize_prefix; } size_t ZSTD_initDStream(ZSTD_DStream* zds) { return ZSTD_initDStream_usingDict(zds, NULL, 0); } /* ZSTD_initDStream_usingDDict() : * ddict will just be referenced, and must outlive decompression session */ size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict) { size_t const initResult = ZSTD_initDStream(zds); zds->ddict = ddict; return initResult; } size_t ZSTD_resetDStream(ZSTD_DStream* zds) { zds->streamStage = zdss_loadHeader; zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; zds->legacyVersion = 0; zds->hostageByte = 0; return ZSTD_frameHeaderSize_prefix; } size_t ZSTD_setDStreamParameter(ZSTD_DStream* zds, ZSTD_DStreamParameter_e paramType, unsigned paramValue) { switch(paramType) { default : return ERROR(parameter_unknown); case DStream_p_maxWindowSize : zds->maxWindowSize = paramValue ? paramValue : (U32)(-1); break; } return 0; } size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds) { return ZSTD_sizeof_DCtx(zds); } size_t ZSTD_estimateDStreamSize(size_t windowSize) { size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX); size_t const inBuffSize = blockSize; /* no block can be larger */ size_t const outBuffSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2); return sizeof(ZSTD_DStream) + ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize; } ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize) { ZSTD_frameHeader fh; size_t const err = ZSTD_getFrameHeader(&fh, src, srcSize); if (ZSTD_isError(err)) return err; if (err>0) return ERROR(srcSize_wrong); return ZSTD_estimateDStreamSize(fh.windowSize); } /* ***** Decompression ***** */ MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const length = MIN(dstCapacity, srcSize); memcpy(dst, src, length); return length; } size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { const char* const istart = (const char*)(input->src) + input->pos; const char* const iend = (const char*)(input->src) + input->size; const char* ip = istart; char* const ostart = (char*)(output->dst) + output->pos; char* const oend = (char*)(output->dst) + output->size; char* op = ostart; U32 someMoreWork = 1; DEBUGLOG(5, "ZSTD_decompressStream"); DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos)); #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) if (zds->legacyVersion) { /* legacy support is incompatible with static dctx */ if (zds->staticSize) return ERROR(memory_allocation); return ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input); } #endif while (someMoreWork) { switch(zds->streamStage) { case zdss_init : ZSTD_resetDStream(zds); /* transparent reset on starting decoding a new frame */ /* fall-through */ case zdss_loadHeader : { size_t const hSize = ZSTD_getFrameHeader(&zds->fParams, zds->headerBuffer, zds->lhSize); if (ZSTD_isError(hSize)) { #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart); if (legacyVersion) { const void* const dict = zds->ddict ? zds->ddict->dictContent : NULL; size_t const dictSize = zds->ddict ? zds->ddict->dictSize : 0; /* legacy support is incompatible with static dctx */ if (zds->staticSize) return ERROR(memory_allocation); CHECK_F(ZSTD_initLegacyStream(&zds->legacyContext, zds->previousLegacyVersion, legacyVersion, dict, dictSize)); zds->legacyVersion = zds->previousLegacyVersion = legacyVersion; return ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input); } else { return hSize; /* error */ } #else return hSize; #endif } if (hSize != 0) { /* need more input */ size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */ if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */ if (iend-ip > 0) { memcpy(zds->headerBuffer + zds->lhSize, ip, iend-ip); zds->lhSize += iend-ip; } input->pos = input->size; return (MAX(ZSTD_frameHeaderSize_min, hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */ } assert(ip != NULL); memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad; break; } } /* check for single-pass mode opportunity */ if (zds->fParams.frameContentSize && zds->fParams.windowSize /* skippable frame if == 0 */ && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) { size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend-istart); if (cSize <= (size_t)(iend-istart)) { size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, oend-op, istart, cSize, zds->ddict); if (ZSTD_isError(decompressedSize)) return decompressedSize; ip = istart + cSize; op += decompressedSize; zds->expected = 0; zds->streamStage = zdss_init; someMoreWork = 0; break; } } /* Consume header (see ZSTDds_decodeFrameHeader) */ DEBUGLOG(4, "Consume header"); CHECK_F(ZSTD_decompressBegin_usingDDict(zds, zds->ddict)); if ((MEM_readLE32(zds->headerBuffer) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ zds->expected = MEM_readLE32(zds->headerBuffer + 4); zds->stage = ZSTDds_skipFrame; } else { CHECK_F(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize)); zds->expected = ZSTD_blockHeaderSize; zds->stage = ZSTDds_decodeBlockHeader; } /* control buffer memory usage */ DEBUGLOG(4, "Control max buffer memory usage"); zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN); if (zds->fParams.windowSize > zds->maxWindowSize) return ERROR(frameParameter_windowTooLarge); /* Adapt buffer sizes to frame header instructions */ { size_t const blockSize = MIN(zds->fParams.windowSize, ZSTD_BLOCKSIZE_MAX); size_t const neededOutSize = zds->fParams.windowSize + blockSize + WILDCOPY_OVERLENGTH * 2; zds->blockSize = blockSize; if ((zds->inBuffSize < blockSize) || (zds->outBuffSize < neededOutSize)) { size_t const bufferSize = blockSize + neededOutSize; DEBUGLOG(4, "inBuff : from %u to %u", (U32)zds->inBuffSize, (U32)blockSize); DEBUGLOG(4, "outBuff : from %u to %u", (U32)zds->outBuffSize, (U32)neededOutSize); if (zds->staticSize) { /* static DCtx */ DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize); assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */ if (bufferSize > zds->staticSize - sizeof(ZSTD_DCtx)) return ERROR(memory_allocation); } else { ZSTD_free(zds->inBuff, zds->customMem); zds->inBuffSize = 0; zds->outBuffSize = 0; zds->inBuff = (char*)ZSTD_malloc(bufferSize, zds->customMem); if (zds->inBuff == NULL) return ERROR(memory_allocation); } zds->inBuffSize = blockSize; zds->outBuff = zds->inBuff + zds->inBuffSize; zds->outBuffSize = neededOutSize; } } zds->streamStage = zdss_read; /* pass-through */ case zdss_read: DEBUGLOG(5, "stage zdss_read"); { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize); if (neededInSize==0) { /* end of frame */ zds->streamStage = zdss_init; someMoreWork = 0; break; } if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ int const isSkipFrame = ZSTD_isSkipFrame(zds); size_t const decodedSize = ZSTD_decompressContinue(zds, zds->outBuff + zds->outStart, (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart), ip, neededInSize); if (ZSTD_isError(decodedSize)) return decodedSize; ip += neededInSize; if (!decodedSize && !isSkipFrame) break; /* this was just a header */ zds->outEnd = zds->outStart + decodedSize; zds->streamStage = zdss_flush; break; } } if (ip==iend) { someMoreWork = 0; break; } /* no more input */ zds->streamStage = zdss_load; /* pass-through */ case zdss_load: { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); size_t const toLoad = neededInSize - zds->inPos; /* should always be <= remaining space within inBuff */ size_t loadedSize; if (toLoad > zds->inBuffSize - zds->inPos) return ERROR(corruption_detected); /* should never happen */ loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip); ip += loadedSize; zds->inPos += loadedSize; if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */ /* decode loaded input */ { const int isSkipFrame = ZSTD_isSkipFrame(zds); size_t const decodedSize = ZSTD_decompressContinue(zds, zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart, zds->inBuff, neededInSize); if (ZSTD_isError(decodedSize)) return decodedSize; zds->inPos = 0; /* input is consumed */ if (!decodedSize && !isSkipFrame) { zds->streamStage = zdss_read; break; } /* this was just a header */ zds->outEnd = zds->outStart + decodedSize; } } zds->streamStage = zdss_flush; /* pass-through */ case zdss_flush: { size_t const toFlushSize = zds->outEnd - zds->outStart; size_t const flushedSize = ZSTD_limitCopy(op, oend-op, zds->outBuff + zds->outStart, toFlushSize); op += flushedSize; zds->outStart += flushedSize; if (flushedSize == toFlushSize) { /* flush completed */ zds->streamStage = zdss_read; if (zds->outStart + zds->blockSize > zds->outBuffSize) zds->outStart = zds->outEnd = 0; break; } } /* cannot complete flush */ someMoreWork = 0; break; default: return ERROR(GENERIC); /* impossible */ } } /* result */ input->pos += (size_t)(ip-istart); output->pos += (size_t)(op-ostart); { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds); if (!nextSrcSizeHint) { /* frame fully decoded */ if (zds->outEnd == zds->outStart) { /* output fully flushed */ if (zds->hostageByte) { if (input->pos >= input->size) { /* can't release hostage (not present) */ zds->streamStage = zdss_read; return 1; } input->pos++; /* release hostage */ } /* zds->hostageByte */ return 0; } /* zds->outEnd == zds->outStart */ if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */ input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */ zds->hostageByte=1; } return 1; } /* nextSrcSizeHint==0 */ nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */ if (zds->inPos > nextSrcSizeHint) return ERROR(GENERIC); /* should never happen */ nextSrcSizeHint -= zds->inPos; /* already loaded*/ return nextSrcSizeHint; } }