/*
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

#ifndef ZSTD_CWKSP_H
#define ZSTD_CWKSP_H

/*-*************************************
*  Dependencies
***************************************/
#include "zstd_internal.h"

#if defined (__cplusplus)
extern "C" {
#endif

/*-*************************************
*  Constants
***************************************/

/* define "workspace is too large" as this number of times larger than needed */
#define ZSTD_WORKSPACETOOLARGE_FACTOR 3

/* when workspace is continuously too large
 * during at least this number of times,
 * context's memory usage is considered wasteful,
 * because it's sized to handle a worst case scenario which rarely happens.
 * In which case, resize it down to free some memory */
#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128

/* Since the workspace is effectively its own little malloc implementation /
 * arena, when we run under ASAN, we should similarly insert redzones between
 * each internal element of the workspace, so ASAN will catch overruns that
 * reach outside an object but that stay inside the workspace.
 *
 * This defines the size of that redzone.
 */
#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
#endif

/*-*************************************
*  Structures
***************************************/
typedef enum {
    ZSTD_cwksp_alloc_objects,
    ZSTD_cwksp_alloc_buffers,
    ZSTD_cwksp_alloc_aligned
} ZSTD_cwksp_alloc_phase_e;

/**
 * Zstd fits all its internal datastructures into a single continuous buffer,
 * so that it only needs to perform a single OS allocation (or so that a buffer
 * can be provided to it and it can perform no allocations at all). This buffer
 * is called the workspace.
 *
 * Several optimizations complicate that process of allocating memory ranges
 * from this workspace for each internal datastructure:
 *
 * - These different internal datastructures have different setup requirements:
 *
 *   - The static objects need to be cleared once and can then be trivially
 *     reused for each compression.
 *
 *   - Various buffers don't need to be initialized at all--they are always
 *     written into before they're read.
 *
 *   - The matchstate tables have a unique requirement that they don't need
 *     their memory to be totally cleared, but they do need the memory to have
 *     some bound, i.e., a guarantee that all values in the memory they've been
 *     allocated is less than some maximum value (which is the starting value
 *     for the indices that they will then use for compression). When this
 *     guarantee is provided to them, they can use the memory without any setup
 *     work. When it can't, they have to clear the area.
 *
 * - These buffers also have different alignment requirements.
 *
 * - We would like to reuse the objects in the workspace for multiple
 *   compressions without having to perform any expensive reallocation or
 *   reinitialization work.
 *
 * - We would like to be able to efficiently reuse the workspace across
 *   multiple compressions **even when the compression parameters change** and
 *   we need to resize some of the objects (where possible).
 *
 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
 * abstraction was created. It works as follows:
 *
 * Workspace Layout:
 *
 * [                        ... workspace ...                         ]
 * [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
 *
 * The various objects that live in the workspace are divided into the
 * following categories, and are allocated separately:
 *
 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
 *   so that literally everything fits in a single buffer. Note: if present,
 *   this must be the first object in the workspace, since ZSTD_free{CCtx,
 *   CDict}() rely on a pointer comparison to see whether one or two frees are
 *   required.
 *
 * - Fixed size objects: these are fixed-size, fixed-count objects that are
 *   nonetheless "dynamically" allocated in the workspace so that we can
 *   control how they're initialized separately from the broader ZSTD_CCtx.
 *   Examples:
 *   - Entropy Workspace
 *   - 2 x ZSTD_compressedBlockState_t
 *   - CDict dictionary contents
 *
 * - Tables: these are any of several different datastructures (hash tables,
 *   chain tables, binary trees) that all respect a common format: they are
 *   uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
 *   Their sizes depend on the cparams.
 *
 * - Aligned: these buffers are used for various purposes that require 4 byte
 *   alignment, but don't require any initialization before they're used.
 *
 * - Buffers: these buffers are used for various purposes that don't require
 *   any alignment or initialization before they're used. This means they can
 *   be moved around at no cost for a new compression.
 *
 * Allocating Memory:
 *
 * The various types of objects must be allocated in order, so they can be
 * correctly packed into the workspace buffer. That order is:
 *
 * 1. Objects
 * 2. Buffers
 * 3. Aligned
 * 4. Tables
 *
 * Attempts to reserve objects of different types out of order will fail.
 */
typedef struct {
    void* workspace;
    void* workspaceEnd;

    void* objectEnd;
    void* tableEnd;
    void* tableValidEnd;
    void* allocStart;

    int allocFailed;
    int workspaceOversizedDuration;
    ZSTD_cwksp_alloc_phase_e phase;
} ZSTD_cwksp;

/*-*************************************
*  Functions
***************************************/

MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);

MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
    (void)ws;
    assert(ws->workspace <= ws->objectEnd);
    assert(ws->objectEnd <= ws->tableEnd);
    assert(ws->objectEnd <= ws->tableValidEnd);
    assert(ws->tableEnd <= ws->allocStart);
    assert(ws->tableValidEnd <= ws->allocStart);
    assert(ws->allocStart <= ws->workspaceEnd);
}

/**
 * Align must be a power of 2.
 */
MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
    size_t const mask = align - 1;
    assert((align & mask) == 0);
    return (size + mask) & ~mask;
}

/**
 * Use this to determine how much space in the workspace we will consume to
 * allocate this object. (Normally it should be exactly the size of the object,
 * but under special conditions, like ASAN, where we pad each object, it might
 * be larger.)
 *
 * Since tables aren't currently redzoned, you don't need to call through this
 * to figure out how much space you need for the matchState tables. Everything
 * else is though.
 */
MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#else
    return size;
#endif
}

MEM_STATIC void ZSTD_cwksp_internal_advance_phase(
        ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) {
    assert(phase >= ws->phase);
    if (phase > ws->phase) {
        if (ws->phase < ZSTD_cwksp_alloc_buffers &&
                phase >= ZSTD_cwksp_alloc_buffers) {
            ws->tableValidEnd = ws->objectEnd;
        }
        if (ws->phase < ZSTD_cwksp_alloc_aligned &&
                phase >= ZSTD_cwksp_alloc_aligned) {
            /* If unaligned allocations down from a too-large top have left us
             * unaligned, we need to realign our alloc ptr. Technically, this
             * can consume space that is unaccounted for in the neededSpace
             * calculation. However, I believe this can only happen when the
             * workspace is too large, and specifically when it is too large
             * by a larger margin than the space that will be consumed. */
            /* TODO: cleaner, compiler warning friendly way to do this??? */
            ws->allocStart = (BYTE*)ws->allocStart - ((size_t)ws->allocStart & (sizeof(U32)-1));
            if (ws->allocStart < ws->tableValidEnd) {
                ws->tableValidEnd = ws->allocStart;
            }
        }
        ws->phase = phase;
    }
}

/**
 * Returns whether this object/buffer/etc was allocated in this workspace.
 */
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) {
    return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
}

/**
 * Internal function. Do not use directly.
 */
MEM_STATIC void* ZSTD_cwksp_reserve_internal(
        ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) {
    void* alloc;
    void* bottom = ws->tableEnd;
    ZSTD_cwksp_internal_advance_phase(ws, phase);
    alloc = (BYTE *)ws->allocStart - bytes;

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    /* over-reserve space */
    alloc = (BYTE *)alloc - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif

    DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
        alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
    ZSTD_cwksp_assert_internal_consistency(ws);
    assert(alloc >= bottom);
    if (alloc < bottom) {
        DEBUGLOG(4, "cwksp: alloc failed!");
        ws->allocFailed = 1;
        return NULL;
    }
    if (alloc < ws->tableValidEnd) {
        ws->tableValidEnd = alloc;
    }
    ws->allocStart = alloc;

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
     * either size. */
    alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
    __asan_unpoison_memory_region(alloc, bytes);
#endif

    return alloc;
}

/**
 * Reserves and returns unaligned memory.
 */
MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) {
    return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
}

/**
 * Reserves and returns memory sized on and aligned on sizeof(unsigned).
 */
MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) {
    assert((bytes & (sizeof(U32)-1)) == 0);
    return ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, sizeof(U32)), ZSTD_cwksp_alloc_aligned);
}

/**
 * Aligned on sizeof(unsigned). These buffers have the special property that
 * their values remain constrained, allowing us to re-use them without
 * memset()-ing them.
 */
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) {
    const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
    void* alloc = ws->tableEnd;
    void* end = (BYTE *)alloc + bytes;
    void* top = ws->allocStart;

    DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
        alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
    assert((bytes & (sizeof(U32)-1)) == 0);
    ZSTD_cwksp_internal_advance_phase(ws, phase);
    ZSTD_cwksp_assert_internal_consistency(ws);
    assert(end <= top);
    if (end > top) {
        DEBUGLOG(4, "cwksp: table alloc failed!");
        ws->allocFailed = 1;
        return NULL;
    }
    ws->tableEnd = end;

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    __asan_unpoison_memory_region(alloc, bytes);
#endif

    return alloc;
}

/**
 * Aligned on sizeof(void*).
 */
MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
    size_t roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
    void* alloc = ws->objectEnd;
    void* end = (BYTE*)alloc + roundedBytes;

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    /* over-reserve space */
    end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif

    DEBUGLOG(5,
        "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
        alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
    assert(((size_t)alloc & (sizeof(void*)-1)) == 0);
    assert((bytes & (sizeof(void*)-1)) == 0);
    ZSTD_cwksp_assert_internal_consistency(ws);
    /* we must be in the first phase, no advance is possible */
    if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
        DEBUGLOG(4, "cwksp: object alloc failed!");
        ws->allocFailed = 1;
        return NULL;
    }
    ws->objectEnd = end;
    ws->tableEnd = end;
    ws->tableValidEnd = end;

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
     * either size. */
    alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
    __asan_unpoison_memory_region(alloc, bytes);
#endif

    return alloc;
}

MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) {
    DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");

#if defined (MEMORY_SANITIZER) && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
    /* To validate that the table re-use logic is sound, and that we don't
     * access table space that we haven't cleaned, we re-"poison" the table
     * space every time we mark it dirty. */
    {
        size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
        assert(__msan_test_shadow(ws->objectEnd, size) == -1);
        __msan_poison(ws->objectEnd, size);
    }
#endif

    assert(ws->tableValidEnd >= ws->objectEnd);
    assert(ws->tableValidEnd <= ws->allocStart);
    ws->tableValidEnd = ws->objectEnd;
    ZSTD_cwksp_assert_internal_consistency(ws);
}

MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
    DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
    assert(ws->tableValidEnd >= ws->objectEnd);
    assert(ws->tableValidEnd <= ws->allocStart);
    if (ws->tableValidEnd < ws->tableEnd) {
        ws->tableValidEnd = ws->tableEnd;
    }
    ZSTD_cwksp_assert_internal_consistency(ws);
}

/**
 * Zero the part of the allocated tables not already marked clean.
 */
MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
    DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
    assert(ws->tableValidEnd >= ws->objectEnd);
    assert(ws->tableValidEnd <= ws->allocStart);
    if (ws->tableValidEnd < ws->tableEnd) {
        memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
    }
    ZSTD_cwksp_mark_tables_clean(ws);
}

/**
 * Invalidates table allocations.
 * All other allocations remain valid.
 */
MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
    DEBUGLOG(4, "cwksp: clearing tables!");

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    {
        size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
        __asan_poison_memory_region(ws->objectEnd, size);
    }
#endif

    ws->tableEnd = ws->objectEnd;
    ZSTD_cwksp_assert_internal_consistency(ws);
}

/**
 * Invalidates all buffer, aligned, and table allocations.
 * Object allocations remain valid.
 */
MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
    DEBUGLOG(4, "cwksp: clearing!");

#if defined (MEMORY_SANITIZER) && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
    /* To validate that the context re-use logic is sound, and that we don't
     * access stuff that this compression hasn't initialized, we re-"poison"
     * the workspace (or at least the non-static, non-table parts of it)
     * every time we start a new compression. */
    {
        size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd;
        __msan_poison(ws->tableValidEnd, size);
    }
#endif

#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
    {
        size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
        __asan_poison_memory_region(ws->objectEnd, size);
    }
#endif

    ws->tableEnd = ws->objectEnd;
    ws->allocStart = ws->workspaceEnd;
    ws->allocFailed = 0;
    if (ws->phase > ZSTD_cwksp_alloc_buffers) {
        ws->phase = ZSTD_cwksp_alloc_buffers;
    }
    ZSTD_cwksp_assert_internal_consistency(ws);
}

/**
 * The provided workspace takes ownership of the buffer [start, start+size).
 * Any existing values in the workspace are ignored (the previously managed
 * buffer, if present, must be separately freed).
 */
MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size) {
    DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
    assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
    ws->workspace = start;
    ws->workspaceEnd = (BYTE*)start + size;
    ws->objectEnd = ws->workspace;
    ws->tableValidEnd = ws->objectEnd;
    ws->phase = ZSTD_cwksp_alloc_objects;
    ZSTD_cwksp_clear(ws);
    ws->workspaceOversizedDuration = 0;
    ZSTD_cwksp_assert_internal_consistency(ws);
}

MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
    void* workspace = ZSTD_malloc(size, customMem);
    DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
    RETURN_ERROR_IF(workspace == NULL, memory_allocation);
    ZSTD_cwksp_init(ws, workspace, size);
    return 0;
}

MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
    void *ptr = ws->workspace;
    DEBUGLOG(4, "cwksp: freeing workspace");
    memset(ws, 0, sizeof(ZSTD_cwksp));
    ZSTD_free(ptr, customMem);
}

/**
 * Moves the management of a workspace from one cwksp to another. The src cwksp
 * is left in an invalid state (src must be re-init()'ed before its used again).
 */
MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
    *dst = *src;
    memset(src, 0, sizeof(ZSTD_cwksp));
}

MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
    return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
}

MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
    return ws->allocFailed;
}

/*-*************************************
*  Functions Checking Free Space
***************************************/

MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
    return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
}

MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
    return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
}

MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
    return ZSTD_cwksp_check_available(
        ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
}

MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
    return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
        && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}

MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
        ZSTD_cwksp* ws, size_t additionalNeededSpace) {
    if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
        ws->workspaceOversizedDuration++;
    } else {
        ws->workspaceOversizedDuration = 0;
    }
}

#if defined (__cplusplus)
}
#endif

#endif /* ZSTD_CWKSP_H */