/* * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /*-************************************* * Dependencies ***************************************/ #include <limits.h> /* INT_MAX */ #include <string.h> /* memset */ #include "cpu.h" #include "mem.h" #include "hist.h" /* HIST_countFast_wksp */ #define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */ #include "fse.h" #define HUF_STATIC_LINKING_ONLY #include "huf.h" #include "zstd_compress_internal.h" #include "zstd_fast.h" #include "zstd_double_fast.h" #include "zstd_lazy.h" #include "zstd_opt.h" #include "zstd_ldm.h" /*-************************************* * Helper functions ***************************************/ size_t ZSTD_compressBound(size_t srcSize) { return ZSTD_COMPRESSBOUND(srcSize); } /*-************************************* * Context memory management ***************************************/ struct ZSTD_CDict_s { void* dictBuffer; const void* dictContent; size_t dictContentSize; void* workspace; size_t workspaceSize; ZSTD_matchState_t matchState; ZSTD_compressedBlockState_t cBlockState; ZSTD_customMem customMem; U32 dictID; }; /* typedef'd to ZSTD_CDict within "zstd.h" */ ZSTD_CCtx* ZSTD_createCCtx(void) { return ZSTD_createCCtx_advanced(ZSTD_defaultCMem); } static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager) { assert(cctx != NULL); memset(cctx, 0, sizeof(*cctx)); cctx->customMem = memManager; cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); { size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters); assert(!ZSTD_isError(err)); (void)err; } } ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem) { ZSTD_STATIC_ASSERT(zcss_init==0); ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1)); if (!customMem.customAlloc ^ !customMem.customFree) return NULL; { ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_malloc(sizeof(ZSTD_CCtx), customMem); if (!cctx) return NULL; ZSTD_initCCtx(cctx, customMem); return cctx; } } ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize) { ZSTD_CCtx* const cctx = (ZSTD_CCtx*) workspace; if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */ if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */ memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */ cctx->staticSize = workspaceSize; cctx->workSpace = (void*)(cctx+1); cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx); /* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */ if (cctx->workSpaceSize < HUF_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t)) return NULL; assert(((size_t)cctx->workSpace & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)cctx->workSpace; cctx->blockState.nextCBlock = cctx->blockState.prevCBlock + 1; { void* const ptr = cctx->blockState.nextCBlock + 1; cctx->entropyWorkspace = (U32*)ptr; } cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); return cctx; } /** * Clears and frees all of the dictionaries in the CCtx. */ static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx) { ZSTD_free(cctx->localDict.dictBuffer, cctx->customMem); ZSTD_freeCDict(cctx->localDict.cdict); memset(&cctx->localDict, 0, sizeof(cctx->localDict)); memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); cctx->cdict = NULL; } static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict) { size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0; size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict); return bufferSize + cdictSize; } static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx) { assert(cctx != NULL); assert(cctx->staticSize == 0); ZSTD_free(cctx->workSpace, cctx->customMem); cctx->workSpace = NULL; ZSTD_clearAllDicts(cctx); #ifdef ZSTD_MULTITHREAD ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL; #endif } size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support free on NULL */ RETURN_ERROR_IF(cctx->staticSize, memory_allocation, "not compatible with static CCtx"); ZSTD_freeCCtxContent(cctx); ZSTD_free(cctx, cctx->customMem); return 0; } static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD return ZSTDMT_sizeof_CCtx(cctx->mtctx); #else (void)cctx; return 0; #endif } size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support sizeof on NULL */ return sizeof(*cctx) + cctx->workSpaceSize + ZSTD_sizeof_localDict(cctx->localDict) + ZSTD_sizeof_mtctx(cctx); } size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs) { return ZSTD_sizeof_CCtx(zcs); /* same object */ } /* private API call, for dictBuilder only */ const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); } static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams( ZSTD_compressionParameters cParams) { ZSTD_CCtx_params cctxParams; memset(&cctxParams, 0, sizeof(cctxParams)); cctxParams.cParams = cParams; cctxParams.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */ assert(!ZSTD_checkCParams(cParams)); cctxParams.fParams.contentSizeFlag = 1; return cctxParams; } static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced( ZSTD_customMem customMem) { ZSTD_CCtx_params* params; if (!customMem.customAlloc ^ !customMem.customFree) return NULL; params = (ZSTD_CCtx_params*)ZSTD_calloc( sizeof(ZSTD_CCtx_params), customMem); if (!params) { return NULL; } params->customMem = customMem; params->compressionLevel = ZSTD_CLEVEL_DEFAULT; params->fParams.contentSizeFlag = 1; return params; } ZSTD_CCtx_params* ZSTD_createCCtxParams(void) { return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem); } size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params) { if (params == NULL) { return 0; } ZSTD_free(params, params->customMem); return 0; } size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params) { return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT); } size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) { RETURN_ERROR_IF(!cctxParams, GENERIC); memset(cctxParams, 0, sizeof(*cctxParams)); cctxParams->compressionLevel = compressionLevel; cctxParams->fParams.contentSizeFlag = 1; return 0; } size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params) { RETURN_ERROR_IF(!cctxParams, GENERIC); FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) ); memset(cctxParams, 0, sizeof(*cctxParams)); cctxParams->cParams = params.cParams; cctxParams->fParams = params.fParams; cctxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */ assert(!ZSTD_checkCParams(params.cParams)); return 0; } /* ZSTD_assignParamsToCCtxParams() : * params is presumed valid at this stage */ static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams( ZSTD_CCtx_params cctxParams, ZSTD_parameters params) { ZSTD_CCtx_params ret = cctxParams; ret.cParams = params.cParams; ret.fParams = params.fParams; ret.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */ assert(!ZSTD_checkCParams(params.cParams)); return ret; } ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param) { ZSTD_bounds bounds = { 0, 0, 0 }; switch(param) { case ZSTD_c_compressionLevel: bounds.lowerBound = ZSTD_minCLevel(); bounds.upperBound = ZSTD_maxCLevel(); return bounds; case ZSTD_c_windowLog: bounds.lowerBound = ZSTD_WINDOWLOG_MIN; bounds.upperBound = ZSTD_WINDOWLOG_MAX; return bounds; case ZSTD_c_hashLog: bounds.lowerBound = ZSTD_HASHLOG_MIN; bounds.upperBound = ZSTD_HASHLOG_MAX; return bounds; case ZSTD_c_chainLog: bounds.lowerBound = ZSTD_CHAINLOG_MIN; bounds.upperBound = ZSTD_CHAINLOG_MAX; return bounds; case ZSTD_c_searchLog: bounds.lowerBound = ZSTD_SEARCHLOG_MIN; bounds.upperBound = ZSTD_SEARCHLOG_MAX; return bounds; case ZSTD_c_minMatch: bounds.lowerBound = ZSTD_MINMATCH_MIN; bounds.upperBound = ZSTD_MINMATCH_MAX; return bounds; case ZSTD_c_targetLength: bounds.lowerBound = ZSTD_TARGETLENGTH_MIN; bounds.upperBound = ZSTD_TARGETLENGTH_MAX; return bounds; case ZSTD_c_strategy: bounds.lowerBound = ZSTD_STRATEGY_MIN; bounds.upperBound = ZSTD_STRATEGY_MAX; return bounds; case ZSTD_c_contentSizeFlag: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_checksumFlag: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_dictIDFlag: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_nbWorkers: bounds.lowerBound = 0; #ifdef ZSTD_MULTITHREAD bounds.upperBound = ZSTDMT_NBWORKERS_MAX; #else bounds.upperBound = 0; #endif return bounds; case ZSTD_c_jobSize: bounds.lowerBound = 0; #ifdef ZSTD_MULTITHREAD bounds.upperBound = ZSTDMT_JOBSIZE_MAX; #else bounds.upperBound = 0; #endif return bounds; case ZSTD_c_overlapLog: bounds.lowerBound = ZSTD_OVERLAPLOG_MIN; bounds.upperBound = ZSTD_OVERLAPLOG_MAX; return bounds; case ZSTD_c_enableLongDistanceMatching: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_ldmHashLog: bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN; bounds.upperBound = ZSTD_LDM_HASHLOG_MAX; return bounds; case ZSTD_c_ldmMinMatch: bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN; bounds.upperBound = ZSTD_LDM_MINMATCH_MAX; return bounds; case ZSTD_c_ldmBucketSizeLog: bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN; bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX; return bounds; case ZSTD_c_ldmHashRateLog: bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN; bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX; return bounds; /* experimental parameters */ case ZSTD_c_rsyncable: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_forceMaxWindow : bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_format: ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); bounds.lowerBound = ZSTD_f_zstd1; bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */ return bounds; case ZSTD_c_forceAttachDict: ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceCopy); bounds.lowerBound = ZSTD_dictDefaultAttach; bounds.upperBound = ZSTD_dictForceCopy; /* note : how to ensure at compile time that this is the highest value enum ? */ return bounds; case ZSTD_c_literalCompressionMode: ZSTD_STATIC_ASSERT(ZSTD_lcm_auto < ZSTD_lcm_huffman && ZSTD_lcm_huffman < ZSTD_lcm_uncompressed); bounds.lowerBound = ZSTD_lcm_auto; bounds.upperBound = ZSTD_lcm_uncompressed; return bounds; default: { ZSTD_bounds const boundError = { ERROR(parameter_unsupported), 0, 0 }; return boundError; } } } /* ZSTD_cParam_withinBounds: * @return 1 if value is within cParam bounds, * 0 otherwise */ static int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value) { ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); if (ZSTD_isError(bounds.error)) return 0; if (value < bounds.lowerBound) return 0; if (value > bounds.upperBound) return 0; return 1; } /* ZSTD_cParam_clampBounds: * Clamps the value into the bounded range. */ static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value) { ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); if (ZSTD_isError(bounds.error)) return bounds.error; if (*value < bounds.lowerBound) *value = bounds.lowerBound; if (*value > bounds.upperBound) *value = bounds.upperBound; return 0; } #define BOUNDCHECK(cParam, val) { \ RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \ parameter_outOfBound); \ } static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param) { switch(param) { case ZSTD_c_compressionLevel: case ZSTD_c_hashLog: case ZSTD_c_chainLog: case ZSTD_c_searchLog: case ZSTD_c_minMatch: case ZSTD_c_targetLength: case ZSTD_c_strategy: return 1; case ZSTD_c_format: case ZSTD_c_windowLog: case ZSTD_c_contentSizeFlag: case ZSTD_c_checksumFlag: case ZSTD_c_dictIDFlag: case ZSTD_c_forceMaxWindow : case ZSTD_c_nbWorkers: case ZSTD_c_jobSize: case ZSTD_c_overlapLog: case ZSTD_c_rsyncable: case ZSTD_c_enableLongDistanceMatching: case ZSTD_c_ldmHashLog: case ZSTD_c_ldmMinMatch: case ZSTD_c_ldmBucketSizeLog: case ZSTD_c_ldmHashRateLog: case ZSTD_c_forceAttachDict: case ZSTD_c_literalCompressionMode: default: return 0; } } size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value) { DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value); if (cctx->streamStage != zcss_init) { if (ZSTD_isUpdateAuthorized(param)) { cctx->cParamsChanged = 1; } else { RETURN_ERROR(stage_wrong); } } switch(param) { case ZSTD_c_nbWorkers: RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported, "MT not compatible with static alloc"); break; case ZSTD_c_compressionLevel: case ZSTD_c_windowLog: case ZSTD_c_hashLog: case ZSTD_c_chainLog: case ZSTD_c_searchLog: case ZSTD_c_minMatch: case ZSTD_c_targetLength: case ZSTD_c_strategy: case ZSTD_c_ldmHashRateLog: case ZSTD_c_format: case ZSTD_c_contentSizeFlag: case ZSTD_c_checksumFlag: case ZSTD_c_dictIDFlag: case ZSTD_c_forceMaxWindow: case ZSTD_c_forceAttachDict: case ZSTD_c_literalCompressionMode: case ZSTD_c_jobSize: case ZSTD_c_overlapLog: case ZSTD_c_rsyncable: case ZSTD_c_enableLongDistanceMatching: case ZSTD_c_ldmHashLog: case ZSTD_c_ldmMinMatch: case ZSTD_c_ldmBucketSizeLog: break; default: RETURN_ERROR(parameter_unsupported); } return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value); } size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, int value) { DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value); switch(param) { case ZSTD_c_format : BOUNDCHECK(ZSTD_c_format, value); CCtxParams->format = (ZSTD_format_e)value; return (size_t)CCtxParams->format; case ZSTD_c_compressionLevel : { FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value)); if (value) { /* 0 : does not change current level */ CCtxParams->compressionLevel = value; } if (CCtxParams->compressionLevel >= 0) return CCtxParams->compressionLevel; return 0; /* return type (size_t) cannot represent negative values */ } case ZSTD_c_windowLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_windowLog, value); CCtxParams->cParams.windowLog = value; return CCtxParams->cParams.windowLog; case ZSTD_c_hashLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_hashLog, value); CCtxParams->cParams.hashLog = value; return CCtxParams->cParams.hashLog; case ZSTD_c_chainLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_chainLog, value); CCtxParams->cParams.chainLog = value; return CCtxParams->cParams.chainLog; case ZSTD_c_searchLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_searchLog, value); CCtxParams->cParams.searchLog = value; return value; case ZSTD_c_minMatch : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_minMatch, value); CCtxParams->cParams.minMatch = value; return CCtxParams->cParams.minMatch; case ZSTD_c_targetLength : BOUNDCHECK(ZSTD_c_targetLength, value); CCtxParams->cParams.targetLength = value; return CCtxParams->cParams.targetLength; case ZSTD_c_strategy : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_strategy, value); CCtxParams->cParams.strategy = (ZSTD_strategy)value; return (size_t)CCtxParams->cParams.strategy; case ZSTD_c_contentSizeFlag : /* Content size written in frame header _when known_ (default:1) */ DEBUGLOG(4, "set content size flag = %u", (value!=0)); CCtxParams->fParams.contentSizeFlag = value != 0; return CCtxParams->fParams.contentSizeFlag; case ZSTD_c_checksumFlag : /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */ CCtxParams->fParams.checksumFlag = value != 0; return CCtxParams->fParams.checksumFlag; case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */ DEBUGLOG(4, "set dictIDFlag = %u", (value!=0)); CCtxParams->fParams.noDictIDFlag = !value; return !CCtxParams->fParams.noDictIDFlag; case ZSTD_c_forceMaxWindow : CCtxParams->forceWindow = (value != 0); return CCtxParams->forceWindow; case ZSTD_c_forceAttachDict : { const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value; BOUNDCHECK(ZSTD_c_forceAttachDict, pref); CCtxParams->attachDictPref = pref; return CCtxParams->attachDictPref; } case ZSTD_c_literalCompressionMode : { const ZSTD_literalCompressionMode_e lcm = (ZSTD_literalCompressionMode_e)value; BOUNDCHECK(ZSTD_c_literalCompressionMode, lcm); CCtxParams->literalCompressionMode = lcm; return CCtxParams->literalCompressionMode; } case ZSTD_c_nbWorkers : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value)); CCtxParams->nbWorkers = value; return CCtxParams->nbWorkers; #endif case ZSTD_c_jobSize : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else /* Adjust to the minimum non-default value. */ if (value != 0 && value < ZSTDMT_JOBSIZE_MIN) value = ZSTDMT_JOBSIZE_MIN; FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value)); assert(value >= 0); CCtxParams->jobSize = value; return CCtxParams->jobSize; #endif case ZSTD_c_overlapLog : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value)); CCtxParams->overlapLog = value; return CCtxParams->overlapLog; #endif case ZSTD_c_rsyncable : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value)); CCtxParams->rsyncable = value; return CCtxParams->rsyncable; #endif case ZSTD_c_enableLongDistanceMatching : CCtxParams->ldmParams.enableLdm = (value!=0); return CCtxParams->ldmParams.enableLdm; case ZSTD_c_ldmHashLog : if (value!=0) /* 0 ==> auto */ BOUNDCHECK(ZSTD_c_ldmHashLog, value); CCtxParams->ldmParams.hashLog = value; return CCtxParams->ldmParams.hashLog; case ZSTD_c_ldmMinMatch : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_ldmMinMatch, value); CCtxParams->ldmParams.minMatchLength = value; return CCtxParams->ldmParams.minMatchLength; case ZSTD_c_ldmBucketSizeLog : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value); CCtxParams->ldmParams.bucketSizeLog = value; return CCtxParams->ldmParams.bucketSizeLog; case ZSTD_c_ldmHashRateLog : RETURN_ERROR_IF(value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN, parameter_outOfBound); CCtxParams->ldmParams.hashRateLog = value; return CCtxParams->ldmParams.hashRateLog; default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); } } size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value) { return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value); } size_t ZSTD_CCtxParams_getParameter( ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, int* value) { switch(param) { case ZSTD_c_format : *value = CCtxParams->format; break; case ZSTD_c_compressionLevel : *value = CCtxParams->compressionLevel; break; case ZSTD_c_windowLog : *value = CCtxParams->cParams.windowLog; break; case ZSTD_c_hashLog : *value = CCtxParams->cParams.hashLog; break; case ZSTD_c_chainLog : *value = CCtxParams->cParams.chainLog; break; case ZSTD_c_searchLog : *value = CCtxParams->cParams.searchLog; break; case ZSTD_c_minMatch : *value = CCtxParams->cParams.minMatch; break; case ZSTD_c_targetLength : *value = CCtxParams->cParams.targetLength; break; case ZSTD_c_strategy : *value = (unsigned)CCtxParams->cParams.strategy; break; case ZSTD_c_contentSizeFlag : *value = CCtxParams->fParams.contentSizeFlag; break; case ZSTD_c_checksumFlag : *value = CCtxParams->fParams.checksumFlag; break; case ZSTD_c_dictIDFlag : *value = !CCtxParams->fParams.noDictIDFlag; break; case ZSTD_c_forceMaxWindow : *value = CCtxParams->forceWindow; break; case ZSTD_c_forceAttachDict : *value = CCtxParams->attachDictPref; break; case ZSTD_c_literalCompressionMode : *value = CCtxParams->literalCompressionMode; break; case ZSTD_c_nbWorkers : #ifndef ZSTD_MULTITHREAD assert(CCtxParams->nbWorkers == 0); #endif *value = CCtxParams->nbWorkers; break; case ZSTD_c_jobSize : #ifndef ZSTD_MULTITHREAD RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); #else assert(CCtxParams->jobSize <= INT_MAX); *value = (int)CCtxParams->jobSize; break; #endif case ZSTD_c_overlapLog : #ifndef ZSTD_MULTITHREAD RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); #else *value = CCtxParams->overlapLog; break; #endif case ZSTD_c_rsyncable : #ifndef ZSTD_MULTITHREAD RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); #else *value = CCtxParams->rsyncable; break; #endif case ZSTD_c_enableLongDistanceMatching : *value = CCtxParams->ldmParams.enableLdm; break; case ZSTD_c_ldmHashLog : *value = CCtxParams->ldmParams.hashLog; break; case ZSTD_c_ldmMinMatch : *value = CCtxParams->ldmParams.minMatchLength; break; case ZSTD_c_ldmBucketSizeLog : *value = CCtxParams->ldmParams.bucketSizeLog; break; case ZSTD_c_ldmHashRateLog : *value = CCtxParams->ldmParams.hashRateLog; break; default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); } return 0; } /** ZSTD_CCtx_setParametersUsingCCtxParams() : * just applies `params` into `cctx` * no action is performed, parameters are merely stored. * If ZSTDMT is enabled, parameters are pushed to cctx->mtctx. * This is possible even if a compression is ongoing. * In which case, new parameters will be applied on the fly, starting with next compression job. */ size_t ZSTD_CCtx_setParametersUsingCCtxParams( ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params) { DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams"); RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); RETURN_ERROR_IF(cctx->cdict, stage_wrong); cctx->requestedParams = *params; return 0; } ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize); RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; return 0; } /** * Initializes the local dict using the requested parameters. * NOTE: This does not use the pledged src size, because it may be used for more * than one compression. */ static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx) { ZSTD_localDict* const dl = &cctx->localDict; ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams( &cctx->requestedParams, 0, dl->dictSize); if (dl->dict == NULL) { /* No local dictionary. */ assert(dl->dictBuffer == NULL); assert(dl->cdict == NULL); assert(dl->dictSize == 0); return 0; } if (dl->cdict != NULL) { assert(cctx->cdict == dl->cdict); /* Local dictionary already initialized. */ return 0; } assert(dl->dictSize > 0); assert(cctx->cdict == NULL); assert(cctx->prefixDict.dict == NULL); dl->cdict = ZSTD_createCDict_advanced( dl->dict, dl->dictSize, ZSTD_dlm_byRef, dl->dictContentType, cParams, cctx->customMem); RETURN_ERROR_IF(!dl->cdict, memory_allocation); cctx->cdict = dl->cdict; return 0; } size_t ZSTD_CCtx_loadDictionary_advanced( ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); RETURN_ERROR_IF(cctx->staticSize, memory_allocation, "no malloc for static CCtx"); DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize); ZSTD_clearAllDicts(cctx); /* in case one already exists */ if (dict == NULL || dictSize == 0) /* no dictionary mode */ return 0; if (dictLoadMethod == ZSTD_dlm_byRef) { cctx->localDict.dict = dict; } else { void* dictBuffer = ZSTD_malloc(dictSize, cctx->customMem); RETURN_ERROR_IF(!dictBuffer, memory_allocation); memcpy(dictBuffer, dict, dictSize); cctx->localDict.dictBuffer = dictBuffer; cctx->localDict.dict = dictBuffer; } cctx->localDict.dictSize = dictSize; cctx->localDict.dictContentType = dictContentType; return 0; } ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference( ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { return ZSTD_CCtx_loadDictionary_advanced( cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); } ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { return ZSTD_CCtx_loadDictionary_advanced( cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); } size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); /* Free the existing local cdict (if any) to save memory. */ ZSTD_clearAllDicts(cctx); cctx->cdict = cdict; return 0; } size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize) { return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent); } size_t ZSTD_CCtx_refPrefix_advanced( ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); ZSTD_clearAllDicts(cctx); cctx->prefixDict.dict = prefix; cctx->prefixDict.dictSize = prefixSize; cctx->prefixDict.dictContentType = dictContentType; return 0; } /*! ZSTD_CCtx_reset() : * Also dumps dictionary */ size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset) { if ( (reset == ZSTD_reset_session_only) || (reset == ZSTD_reset_session_and_parameters) ) { cctx->streamStage = zcss_init; cctx->pledgedSrcSizePlusOne = 0; } if ( (reset == ZSTD_reset_parameters) || (reset == ZSTD_reset_session_and_parameters) ) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); ZSTD_clearAllDicts(cctx); return ZSTD_CCtxParams_reset(&cctx->requestedParams); } return 0; } /** ZSTD_checkCParams() : control CParam values remain within authorized range. @return : 0, or an error code if one value is beyond authorized range */ size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams) { BOUNDCHECK(ZSTD_c_windowLog, cParams.windowLog); BOUNDCHECK(ZSTD_c_chainLog, cParams.chainLog); BOUNDCHECK(ZSTD_c_hashLog, cParams.hashLog); BOUNDCHECK(ZSTD_c_searchLog, cParams.searchLog); BOUNDCHECK(ZSTD_c_minMatch, cParams.minMatch); BOUNDCHECK(ZSTD_c_targetLength,cParams.targetLength); BOUNDCHECK(ZSTD_c_strategy, cParams.strategy); return 0; } /** ZSTD_clampCParams() : * make CParam values within valid range. * @return : valid CParams */ static ZSTD_compressionParameters ZSTD_clampCParams(ZSTD_compressionParameters cParams) { # define CLAMP_TYPE(cParam, val, type) { \ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \ if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \ else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \ } # define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, int) CLAMP(ZSTD_c_windowLog, cParams.windowLog); CLAMP(ZSTD_c_chainLog, cParams.chainLog); CLAMP(ZSTD_c_hashLog, cParams.hashLog); CLAMP(ZSTD_c_searchLog, cParams.searchLog); CLAMP(ZSTD_c_minMatch, cParams.minMatch); CLAMP(ZSTD_c_targetLength,cParams.targetLength); CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy); return cParams; } /** ZSTD_cycleLog() : * condition for correct operation : hashLog > 1 */ static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) { U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); return hashLog - btScale; } /** ZSTD_adjustCParams_internal() : * optimize `cPar` for a specified input (`srcSize` and `dictSize`). * mostly downsize to reduce memory consumption and initialization latency. * `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known. * note : for the time being, `srcSize==0` means "unknown" too, for compatibility with older convention. * condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */ static ZSTD_compressionParameters ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { static const U64 minSrcSize = 513; /* (1<<9) + 1 */ static const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1); assert(ZSTD_checkCParams(cPar)==0); if (dictSize && (srcSize+1<2) /* ZSTD_CONTENTSIZE_UNKNOWN and 0 mean "unknown" */ ) srcSize = minSrcSize; /* presumed small when there is a dictionary */ else if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* 0 == unknown : presumed large */ /* resize windowLog if input is small enough, to use less memory */ if ( (srcSize < maxWindowResize) && (dictSize < maxWindowResize) ) { U32 const tSize = (U32)(srcSize + dictSize); static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN; U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN : ZSTD_highbit32(tSize-1) + 1; if (cPar.windowLog > srcLog) cPar.windowLog = srcLog; } if (cPar.hashLog > cPar.windowLog+1) cPar.hashLog = cPar.windowLog+1; { U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy); if (cycleLog > cPar.windowLog) cPar.chainLog -= (cycleLog - cPar.windowLog); } if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */ return cPar; } ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */ return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize); } ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize) { ZSTD_compressionParameters cParams = ZSTD_getCParams(CCtxParams->compressionLevel, srcSizeHint, dictSize); if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG; if (CCtxParams->cParams.windowLog) cParams.windowLog = CCtxParams->cParams.windowLog; if (CCtxParams->cParams.hashLog) cParams.hashLog = CCtxParams->cParams.hashLog; if (CCtxParams->cParams.chainLog) cParams.chainLog = CCtxParams->cParams.chainLog; if (CCtxParams->cParams.searchLog) cParams.searchLog = CCtxParams->cParams.searchLog; if (CCtxParams->cParams.minMatch) cParams.minMatch = CCtxParams->cParams.minMatch; if (CCtxParams->cParams.targetLength) cParams.targetLength = CCtxParams->cParams.targetLength; if (CCtxParams->cParams.strategy) cParams.strategy = CCtxParams->cParams.strategy; assert(!ZSTD_checkCParams(cParams)); return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize); } static size_t ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams, const U32 forCCtx) { size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog); size_t const hSize = ((size_t)1) << cParams->hashLog; U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; size_t const h3Size = ((size_t)1) << hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits)) * sizeof(U32) + (ZSTD_OPT_NUM+1) * (sizeof(ZSTD_match_t)+sizeof(ZSTD_optimal_t)); size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt)) ? optPotentialSpace : 0; DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u", (U32)chainSize, (U32)hSize, (U32)h3Size); return tableSpace + optSpace; } size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params) { RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(params, 0, 0); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog); U32 const divider = (cParams.minMatch==3) ? 3 : 4; size_t const maxNbSeq = blockSize / divider; size_t const tokenSpace = WILDCOPY_OVERLENGTH + blockSize + 11*maxNbSeq; size_t const entropySpace = HUF_WORKSPACE_SIZE; size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t); size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 1); size_t const ldmSpace = ZSTD_ldm_getTableSize(params->ldmParams); size_t const ldmSeqSpace = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize) * sizeof(rawSeq); size_t const neededSpace = entropySpace + blockStateSpace + tokenSpace + matchStateSize + ldmSpace + ldmSeqSpace; DEBUGLOG(5, "sizeof(ZSTD_CCtx) : %u", (U32)sizeof(ZSTD_CCtx)); DEBUGLOG(5, "estimate workSpace : %u", (U32)neededSpace); return sizeof(ZSTD_CCtx) + neededSpace; } } size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams) { ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams); return ZSTD_estimateCCtxSize_usingCCtxParams(¶ms); } static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0); return ZSTD_estimateCCtxSize_usingCParams(cParams); } size_t ZSTD_estimateCCtxSize(int compressionLevel) { int level; size_t memBudget = 0; for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { size_t const newMB = ZSTD_estimateCCtxSize_internal(level); if (newMB > memBudget) memBudget = newMB; } return memBudget; } size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params) { RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(params, 0, 0); size_t const CCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(params); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog); size_t const inBuffSize = ((size_t)1 << cParams.windowLog) + blockSize; size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1; size_t const streamingSize = inBuffSize + outBuffSize; return CCtxSize + streamingSize; } } size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams) { ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams); return ZSTD_estimateCStreamSize_usingCCtxParams(¶ms); } static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0); return ZSTD_estimateCStreamSize_usingCParams(cParams); } size_t ZSTD_estimateCStreamSize(int compressionLevel) { int level; size_t memBudget = 0; for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { size_t const newMB = ZSTD_estimateCStreamSize_internal(level); if (newMB > memBudget) memBudget = newMB; } return memBudget; } /* ZSTD_getFrameProgression(): * tells how much data has been consumed (input) and produced (output) for current frame. * able to count progression inside worker threads (non-blocking mode). */ ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers > 0) { return ZSTDMT_getFrameProgression(cctx->mtctx); } #endif { ZSTD_frameProgression fp; size_t const buffered = (cctx->inBuff == NULL) ? 0 : cctx->inBuffPos - cctx->inToCompress; if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress); assert(buffered <= ZSTD_BLOCKSIZE_MAX); fp.ingested = cctx->consumedSrcSize + buffered; fp.consumed = cctx->consumedSrcSize; fp.produced = cctx->producedCSize; fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */ fp.currentJobID = 0; fp.nbActiveWorkers = 0; return fp; } } /*! ZSTD_toFlushNow() * Only useful for multithreading scenarios currently (nbWorkers >= 1). */ size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers > 0) { return ZSTDMT_toFlushNow(cctx->mtctx); } #endif (void)cctx; return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */ } static U32 ZSTD_equivalentCParams(ZSTD_compressionParameters cParams1, ZSTD_compressionParameters cParams2) { return (cParams1.hashLog == cParams2.hashLog) & (cParams1.chainLog == cParams2.chainLog) & (cParams1.strategy == cParams2.strategy) /* opt parser space */ & ((cParams1.minMatch==3) == (cParams2.minMatch==3)); /* hashlog3 space */ } static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1, ZSTD_compressionParameters cParams2) { (void)cParams1; (void)cParams2; assert(cParams1.windowLog == cParams2.windowLog); assert(cParams1.chainLog == cParams2.chainLog); assert(cParams1.hashLog == cParams2.hashLog); assert(cParams1.searchLog == cParams2.searchLog); assert(cParams1.minMatch == cParams2.minMatch); assert(cParams1.targetLength == cParams2.targetLength); assert(cParams1.strategy == cParams2.strategy); } /** The parameters are equivalent if ldm is not enabled in both sets or * all the parameters are equivalent. */ static U32 ZSTD_equivalentLdmParams(ldmParams_t ldmParams1, ldmParams_t ldmParams2) { return (!ldmParams1.enableLdm && !ldmParams2.enableLdm) || (ldmParams1.enableLdm == ldmParams2.enableLdm && ldmParams1.hashLog == ldmParams2.hashLog && ldmParams1.bucketSizeLog == ldmParams2.bucketSizeLog && ldmParams1.minMatchLength == ldmParams2.minMatchLength && ldmParams1.hashRateLog == ldmParams2.hashRateLog); } typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e; /* ZSTD_sufficientBuff() : * check internal buffers exist for streaming if buffPol == ZSTDb_buffered . * Note : they are assumed to be correctly sized if ZSTD_equivalentCParams()==1 */ static U32 ZSTD_sufficientBuff(size_t bufferSize1, size_t maxNbSeq1, size_t maxNbLit1, ZSTD_buffered_policy_e buffPol2, ZSTD_compressionParameters cParams2, U64 pledgedSrcSize) { size_t const windowSize2 = MAX(1, (size_t)MIN(((U64)1 << cParams2.windowLog), pledgedSrcSize)); size_t const blockSize2 = MIN(ZSTD_BLOCKSIZE_MAX, windowSize2); size_t const maxNbSeq2 = blockSize2 / ((cParams2.minMatch == 3) ? 3 : 4); size_t const maxNbLit2 = blockSize2; size_t const neededBufferSize2 = (buffPol2==ZSTDb_buffered) ? windowSize2 + blockSize2 : 0; DEBUGLOG(4, "ZSTD_sufficientBuff: is neededBufferSize2=%u <= bufferSize1=%u", (U32)neededBufferSize2, (U32)bufferSize1); DEBUGLOG(4, "ZSTD_sufficientBuff: is maxNbSeq2=%u <= maxNbSeq1=%u", (U32)maxNbSeq2, (U32)maxNbSeq1); DEBUGLOG(4, "ZSTD_sufficientBuff: is maxNbLit2=%u <= maxNbLit1=%u", (U32)maxNbLit2, (U32)maxNbLit1); return (maxNbLit2 <= maxNbLit1) & (maxNbSeq2 <= maxNbSeq1) & (neededBufferSize2 <= bufferSize1); } /** Equivalence for resetCCtx purposes */ static U32 ZSTD_equivalentParams(ZSTD_CCtx_params params1, ZSTD_CCtx_params params2, size_t buffSize1, size_t maxNbSeq1, size_t maxNbLit1, ZSTD_buffered_policy_e buffPol2, U64 pledgedSrcSize) { DEBUGLOG(4, "ZSTD_equivalentParams: pledgedSrcSize=%u", (U32)pledgedSrcSize); if (!ZSTD_equivalentCParams(params1.cParams, params2.cParams)) { DEBUGLOG(4, "ZSTD_equivalentCParams() == 0"); return 0; } if (!ZSTD_equivalentLdmParams(params1.ldmParams, params2.ldmParams)) { DEBUGLOG(4, "ZSTD_equivalentLdmParams() == 0"); return 0; } if (!ZSTD_sufficientBuff(buffSize1, maxNbSeq1, maxNbLit1, buffPol2, params2.cParams, pledgedSrcSize)) { DEBUGLOG(4, "ZSTD_sufficientBuff() == 0"); return 0; } return 1; } static void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs) { int i; for (i = 0; i < ZSTD_REP_NUM; ++i) bs->rep[i] = repStartValue[i]; bs->entropy.huf.repeatMode = HUF_repeat_none; bs->entropy.fse.offcode_repeatMode = FSE_repeat_none; bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none; bs->entropy.fse.litlength_repeatMode = FSE_repeat_none; } /*! ZSTD_invalidateMatchState() * Invalidate all the matches in the match finder tables. * Requires nextSrc and base to be set (can be NULL). */ static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms) { ZSTD_window_clear(&ms->window); ms->nextToUpdate = ms->window.dictLimit; ms->nextToUpdate3 = ms->window.dictLimit; ms->loadedDictEnd = 0; ms->opt.litLengthSum = 0; /* force reset of btopt stats */ ms->dictMatchState = NULL; } /*! ZSTD_continueCCtx() : * reuse CCtx without reset (note : requires no dictionary) */ static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_CCtx_params params, U64 pledgedSrcSize) { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize)); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize); DEBUGLOG(4, "ZSTD_continueCCtx: re-use context in place"); cctx->blockSize = blockSize; /* previous block size could be different even for same windowLog, due to pledgedSrcSize */ cctx->appliedParams = params; cctx->blockState.matchState.cParams = params.cParams; cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; cctx->consumedSrcSize = 0; cctx->producedCSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) cctx->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(4, "pledged content size : %u ; flag : %u", (U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag); cctx->stage = ZSTDcs_init; cctx->dictID = 0; if (params.ldmParams.enableLdm) ZSTD_window_clear(&cctx->ldmState.window); ZSTD_referenceExternalSequences(cctx, NULL, 0); ZSTD_invalidateMatchState(&cctx->blockState.matchState); ZSTD_reset_compressedBlockState(cctx->blockState.prevCBlock); XXH64_reset(&cctx->xxhState, 0); return 0; } typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e; static void* ZSTD_reset_matchState(ZSTD_matchState_t* ms, void* ptr, const ZSTD_compressionParameters* cParams, ZSTD_compResetPolicy_e const crp, U32 const forCCtx) { size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog); size_t const hSize = ((size_t)1) << cParams->hashLog; U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; size_t const h3Size = ((size_t)1) << hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); assert(((size_t)ptr & 3) == 0); ms->hashLog3 = hashLog3; memset(&ms->window, 0, sizeof(ms->window)); ms->window.dictLimit = 1; /* start from 1, so that 1st position is valid */ ms->window.lowLimit = 1; /* it ensures first and later CCtx usages compress the same */ ms->window.nextSrc = ms->window.base + 1; /* see issue #1241 */ ZSTD_invalidateMatchState(ms); /* opt parser space */ if (forCCtx && (cParams->strategy >= ZSTD_btopt)) { DEBUGLOG(4, "reserving optimal parser space"); ms->opt.litFreq = (unsigned*)ptr; ms->opt.litLengthFreq = ms->opt.litFreq + (1<<Litbits); ms->opt.matchLengthFreq = ms->opt.litLengthFreq + (MaxLL+1); ms->opt.offCodeFreq = ms->opt.matchLengthFreq + (MaxML+1); ptr = ms->opt.offCodeFreq + (MaxOff+1); ms->opt.matchTable = (ZSTD_match_t*)ptr; ptr = ms->opt.matchTable + ZSTD_OPT_NUM+1; ms->opt.priceTable = (ZSTD_optimal_t*)ptr; ptr = ms->opt.priceTable + ZSTD_OPT_NUM+1; } /* table Space */ DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_noMemset); assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */ ms->hashTable = (U32*)(ptr); ms->chainTable = ms->hashTable + hSize; ms->hashTable3 = ms->chainTable + chainSize; ptr = ms->hashTable3 + h3Size; ms->cParams = *cParams; assert(((size_t)ptr & 3) == 0); return ptr; } #define ZSTD_WORKSPACETOOLARGE_FACTOR 3 /* define "workspace is too large" as this number of times larger than needed */ #define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128 /* when workspace is continuously too large * during at least this number of times, * context's memory usage is considered wasteful, * because it's sized to handle a worst case scenario which rarely happens. * In which case, resize it down to free some memory */ /*! ZSTD_resetCCtx_internal() : note : `params` are assumed fully validated at this stage */ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_compResetPolicy_e const crp, ZSTD_buffered_policy_e const zbuff) { DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u", (U32)pledgedSrcSize, params.cParams.windowLog); assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); if (crp == ZSTDcrp_continue) { if (ZSTD_equivalentParams(zc->appliedParams, params, zc->inBuffSize, zc->seqStore.maxNbSeq, zc->seqStore.maxNbLit, zbuff, pledgedSrcSize)) { DEBUGLOG(4, "ZSTD_equivalentParams()==1 -> continue mode (wLog1=%u, blockSize1=%zu)", zc->appliedParams.cParams.windowLog, zc->blockSize); zc->workSpaceOversizedDuration += (zc->workSpaceOversizedDuration > 0); /* if it was too large, it still is */ if (zc->workSpaceOversizedDuration <= ZSTD_WORKSPACETOOLARGE_MAXDURATION) return ZSTD_continueCCtx(zc, params, pledgedSrcSize); } } DEBUGLOG(4, "ZSTD_equivalentParams()==0 -> reset CCtx"); if (params.ldmParams.enableLdm) { /* Adjust long distance matching parameters */ ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); assert(params.ldmParams.hashRateLog < 32); zc->ldmState.hashPower = ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength); } { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize)); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize); U32 const divider = (params.cParams.minMatch==3) ? 3 : 4; size_t const maxNbSeq = blockSize / divider; size_t const tokenSpace = WILDCOPY_OVERLENGTH + blockSize + 11*maxNbSeq; size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0; size_t const buffInSize = (zbuff==ZSTDb_buffered) ? windowSize + blockSize : 0; size_t const matchStateSize = ZSTD_sizeof_matchState(¶ms.cParams, /* forCCtx */ 1); size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize); void* ptr; /* used to partition workSpace */ /* Check if workSpace is large enough, alloc a new one if needed */ { size_t const entropySpace = HUF_WORKSPACE_SIZE; size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t); size_t const bufferSpace = buffInSize + buffOutSize; size_t const ldmSpace = ZSTD_ldm_getTableSize(params.ldmParams); size_t const ldmSeqSpace = maxNbLdmSeq * sizeof(rawSeq); size_t const neededSpace = entropySpace + blockStateSpace + ldmSpace + ldmSeqSpace + matchStateSize + tokenSpace + bufferSpace; int const workSpaceTooSmall = zc->workSpaceSize < neededSpace; int const workSpaceTooLarge = zc->workSpaceSize > ZSTD_WORKSPACETOOLARGE_FACTOR * neededSpace; int const workSpaceWasteful = workSpaceTooLarge && (zc->workSpaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION); zc->workSpaceOversizedDuration = workSpaceTooLarge ? zc->workSpaceOversizedDuration+1 : 0; DEBUGLOG(4, "Need %zuKB workspace, including %zuKB for match state, and %zuKB for buffers", neededSpace>>10, matchStateSize>>10, bufferSpace>>10); DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize); if (workSpaceTooSmall || workSpaceWasteful) { DEBUGLOG(4, "Need to resize workSpaceSize from %zuKB to %zuKB", zc->workSpaceSize >> 10, neededSpace >> 10); RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize"); zc->workSpaceSize = 0; ZSTD_free(zc->workSpace, zc->customMem); zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem); RETURN_ERROR_IF(zc->workSpace == NULL, memory_allocation); zc->workSpaceSize = neededSpace; zc->workSpaceOversizedDuration = 0; /* Statically sized space. * entropyWorkspace never moves, * though prev/next block swap places */ assert(((size_t)zc->workSpace & 3) == 0); /* ensure correct alignment */ assert(zc->workSpaceSize >= 2 * sizeof(ZSTD_compressedBlockState_t)); zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)zc->workSpace; zc->blockState.nextCBlock = zc->blockState.prevCBlock + 1; ptr = zc->blockState.nextCBlock + 1; zc->entropyWorkspace = (U32*)ptr; } } /* init params */ zc->appliedParams = params; zc->blockState.matchState.cParams = params.cParams; zc->pledgedSrcSizePlusOne = pledgedSrcSize+1; zc->consumedSrcSize = 0; zc->producedCSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) zc->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(4, "pledged content size : %u ; flag : %u", (unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag); zc->blockSize = blockSize; XXH64_reset(&zc->xxhState, 0); zc->stage = ZSTDcs_init; zc->dictID = 0; ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock); ptr = zc->entropyWorkspace + HUF_WORKSPACE_SIZE_U32; /* ldm hash table */ /* initialize bucketOffsets table later for pointer alignment */ if (params.ldmParams.enableLdm) { size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog; memset(ptr, 0, ldmHSize * sizeof(ldmEntry_t)); assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ zc->ldmState.hashTable = (ldmEntry_t*)ptr; ptr = zc->ldmState.hashTable + ldmHSize; zc->ldmSequences = (rawSeq*)ptr; ptr = zc->ldmSequences + maxNbLdmSeq; zc->maxNbLdmSequences = maxNbLdmSeq; memset(&zc->ldmState.window, 0, sizeof(zc->ldmState.window)); } assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ ptr = ZSTD_reset_matchState(&zc->blockState.matchState, ptr, ¶ms.cParams, crp, /* forCCtx */ 1); /* sequences storage */ zc->seqStore.maxNbSeq = maxNbSeq; zc->seqStore.sequencesStart = (seqDef*)ptr; ptr = zc->seqStore.sequencesStart + maxNbSeq; zc->seqStore.llCode = (BYTE*) ptr; zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq; zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq; zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq; /* ZSTD_wildcopy() is used to copy into the literals buffer, * so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes. */ zc->seqStore.maxNbLit = blockSize; ptr = zc->seqStore.litStart + blockSize + WILDCOPY_OVERLENGTH; /* ldm bucketOffsets table */ if (params.ldmParams.enableLdm) { size_t const ldmBucketSize = ((size_t)1) << (params.ldmParams.hashLog - params.ldmParams.bucketSizeLog); memset(ptr, 0, ldmBucketSize); zc->ldmState.bucketOffsets = (BYTE*)ptr; ptr = zc->ldmState.bucketOffsets + ldmBucketSize; ZSTD_window_clear(&zc->ldmState.window); } ZSTD_referenceExternalSequences(zc, NULL, 0); /* buffers */ zc->inBuffSize = buffInSize; zc->inBuff = (char*)ptr; zc->outBuffSize = buffOutSize; zc->outBuff = zc->inBuff + buffInSize; return 0; } } /* ZSTD_invalidateRepCodes() : * ensures next compression will not use repcodes from previous block. * Note : only works with regular variant; * do not use with extDict variant ! */ void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) { int i; for (i=0; i<ZSTD_REP_NUM; i++) cctx->blockState.prevCBlock->rep[i] = 0; assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); } /* These are the approximate sizes for each strategy past which copying the * dictionary tables into the working context is faster than using them * in-place. */ static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = { 8 KB, /* unused */ 8 KB, /* ZSTD_fast */ 16 KB, /* ZSTD_dfast */ 32 KB, /* ZSTD_greedy */ 32 KB, /* ZSTD_lazy */ 32 KB, /* ZSTD_lazy2 */ 32 KB, /* ZSTD_btlazy2 */ 32 KB, /* ZSTD_btopt */ 8 KB, /* ZSTD_btultra */ 8 KB /* ZSTD_btultra2 */ }; static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize) { size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy]; return ( pledgedSrcSize <= cutoff || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN || params.attachDictPref == ZSTD_dictForceAttach ) && params.attachDictPref != ZSTD_dictForceCopy && !params.forceWindow; /* dictMatchState isn't correctly * handled in _enforceMaxDist */ } static size_t ZSTD_resetCCtx_byAttachingCDict( ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { { const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams; unsigned const windowLog = params.cParams.windowLog; assert(windowLog != 0); /* Resize working context table params for input only, since the dict * has its own tables. */ params.cParams = ZSTD_adjustCParams_internal(*cdict_cParams, pledgedSrcSize, 0); params.cParams.windowLog = windowLog; ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, ZSTDcrp_continue, zbuff); assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy); } { const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc - cdict->matchState.window.base); const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit; if (cdictLen == 0) { /* don't even attach dictionaries with no contents */ DEBUGLOG(4, "skipping attaching empty dictionary"); } else { DEBUGLOG(4, "attaching dictionary into context"); cctx->blockState.matchState.dictMatchState = &cdict->matchState; /* prep working match state so dict matches never have negative indices * when they are translated to the working context's index space. */ if (cctx->blockState.matchState.window.dictLimit < cdictEnd) { cctx->blockState.matchState.window.nextSrc = cctx->blockState.matchState.window.base + cdictEnd; ZSTD_window_clear(&cctx->blockState.matchState.window); } cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit; } } cctx->dictID = cdict->dictID; /* copy block state */ memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); return 0; } static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams; DEBUGLOG(4, "copying dictionary into context"); { unsigned const windowLog = params.cParams.windowLog; assert(windowLog != 0); /* Copy only compression parameters related to tables. */ params.cParams = *cdict_cParams; params.cParams.windowLog = windowLog; ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, ZSTDcrp_noMemset, zbuff); assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy); assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog); assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog); } /* copy tables */ { size_t const chainSize = (cdict_cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict_cParams->chainLog); size_t const hSize = (size_t)1 << cdict_cParams->hashLog; size_t const tableSpace = (chainSize + hSize) * sizeof(U32); assert((U32*)cctx->blockState.matchState.chainTable == (U32*)cctx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */ assert((U32*)cctx->blockState.matchState.hashTable3 == (U32*)cctx->blockState.matchState.chainTable + chainSize); assert((U32*)cdict->matchState.chainTable == (U32*)cdict->matchState.hashTable + hSize); /* chainTable must follow hashTable */ assert((U32*)cdict->matchState.hashTable3 == (U32*)cdict->matchState.chainTable + chainSize); memcpy(cctx->blockState.matchState.hashTable, cdict->matchState.hashTable, tableSpace); /* presumes all tables follow each other */ } /* Zero the hashTable3, since the cdict never fills it */ { size_t const h3Size = (size_t)1 << cctx->blockState.matchState.hashLog3; assert(cdict->matchState.hashLog3 == 0); memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32)); } /* copy dictionary offsets */ { ZSTD_matchState_t const* srcMatchState = &cdict->matchState; ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState; dstMatchState->window = srcMatchState->window; dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; dstMatchState->nextToUpdate3= srcMatchState->nextToUpdate3; dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; } cctx->dictID = cdict->dictID; /* copy block state */ memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); return 0; } /* We have a choice between copying the dictionary context into the working * context, or referencing the dictionary context from the working context * in-place. We decide here which strategy to use. */ static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)", (unsigned)pledgedSrcSize); if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) { return ZSTD_resetCCtx_byAttachingCDict( cctx, cdict, params, pledgedSrcSize, zbuff); } else { return ZSTD_resetCCtx_byCopyingCDict( cctx, cdict, params, pledgedSrcSize, zbuff); } } /*! ZSTD_copyCCtx_internal() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * The "context", in this case, refers to the hash and chain tables, * entropy tables, and dictionary references. * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx. * @return : 0, or an error code */ static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, ZSTD_frameParameters fParams, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(5, "ZSTD_copyCCtx_internal"); RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong); memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem)); { ZSTD_CCtx_params params = dstCCtx->requestedParams; /* Copy only compression parameters related to tables. */ params.cParams = srcCCtx->appliedParams.cParams; params.fParams = fParams; ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize, ZSTDcrp_noMemset, zbuff); assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog); assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy); assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog); assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog); assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3); } /* copy tables */ { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog); size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog; size_t const h3Size = (size_t)1 << srcCCtx->blockState.matchState.hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); assert((U32*)dstCCtx->blockState.matchState.chainTable == (U32*)dstCCtx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */ assert((U32*)dstCCtx->blockState.matchState.hashTable3 == (U32*)dstCCtx->blockState.matchState.chainTable + chainSize); memcpy(dstCCtx->blockState.matchState.hashTable, srcCCtx->blockState.matchState.hashTable, tableSpace); /* presumes all tables follow each other */ } /* copy dictionary offsets */ { const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState; ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState; dstMatchState->window = srcMatchState->window; dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; dstMatchState->nextToUpdate3= srcMatchState->nextToUpdate3; dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; } dstCCtx->dictID = srcCCtx->dictID; /* copy block state */ memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock)); return 0; } /*! ZSTD_copyCCtx() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * pledgedSrcSize==0 means "unknown". * @return : 0, or an error code */ size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize) { ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0); ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1); if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN); return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx, fParams, pledgedSrcSize, zbuff); } #define ZSTD_ROWSIZE 16 /*! ZSTD_reduceTable() : * reduce table indexes by `reducerValue`, or squash to zero. * PreserveMark preserves "unsorted mark" for btlazy2 strategy. * It must be set to a clear 0/1 value, to remove branch during inlining. * Presume table size is a multiple of ZSTD_ROWSIZE * to help auto-vectorization */ FORCE_INLINE_TEMPLATE void ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark) { int const nbRows = (int)size / ZSTD_ROWSIZE; int cellNb = 0; int rowNb; assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */ assert(size < (1U<<31)); /* can be casted to int */ for (rowNb=0 ; rowNb < nbRows ; rowNb++) { int column; for (column=0; column<ZSTD_ROWSIZE; column++) { if (preserveMark) { U32 const adder = (table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) ? reducerValue : 0; table[cellNb] += adder; } if (table[cellNb] < reducerValue) table[cellNb] = 0; else table[cellNb] -= reducerValue; cellNb++; } } } static void ZSTD_reduceTable(U32* const table, U32 const size, U32 const reducerValue) { ZSTD_reduceTable_internal(table, size, reducerValue, 0); } static void ZSTD_reduceTable_btlazy2(U32* const table, U32 const size, U32 const reducerValue) { ZSTD_reduceTable_internal(table, size, reducerValue, 1); } /*! ZSTD_reduceIndex() : * rescale all indexes to avoid future overflow (indexes are U32) */ static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue) { ZSTD_matchState_t* const ms = &zc->blockState.matchState; { U32 const hSize = (U32)1 << zc->appliedParams.cParams.hashLog; ZSTD_reduceTable(ms->hashTable, hSize, reducerValue); } if (zc->appliedParams.cParams.strategy != ZSTD_fast) { U32 const chainSize = (U32)1 << zc->appliedParams.cParams.chainLog; if (zc->appliedParams.cParams.strategy == ZSTD_btlazy2) ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue); else ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue); } if (ms->hashLog3) { U32 const h3Size = (U32)1 << ms->hashLog3; ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue); } } /*-******************************************************* * Block entropic compression *********************************************************/ /* See doc/zstd_compression_format.md for detailed format description */ static size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) { U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3); RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity, dstSize_tooSmall); MEM_writeLE24(dst, cBlockHeader24); memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); return ZSTD_blockHeaderSize + srcSize; } static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE* const)dst; U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall); switch(flSize) { case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3)); break; case 2: /* 2 - 2 - 12 */ MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4))); break; case 3: /* 2 - 2 - 20 */ MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4))); break; default: /* not necessary : flSize is {1,2,3} */ assert(0); } memcpy(ostart + flSize, src, srcSize); return srcSize + flSize; } static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE* const)dst; U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */ switch(flSize) { case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3)); break; case 2: /* 2 - 2 - 12 */ MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4))); break; case 3: /* 2 - 2 - 20 */ MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4))); break; default: /* not necessary : flSize is {1,2,3} */ assert(0); } ostart[flSize] = *(const BYTE*)src; return flSize+1; } /* ZSTD_minGain() : * minimum compression required * to generate a compress block or a compressed literals section. * note : use same formula for both situations */ static size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat) { U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6; ZSTD_STATIC_ASSERT(ZSTD_btultra == 8); assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat)); return (srcSize >> minlog) + 2; } static size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf, ZSTD_hufCTables_t* nextHuf, ZSTD_strategy strategy, int disableLiteralCompression, void* dst, size_t dstCapacity, const void* src, size_t srcSize, void* workspace, size_t wkspSize, const int bmi2) { size_t const minGain = ZSTD_minGain(srcSize, strategy); size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB); BYTE* const ostart = (BYTE*)dst; U32 singleStream = srcSize < 256; symbolEncodingType_e hType = set_compressed; size_t cLitSize; DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i)", disableLiteralCompression); /* Prepare nextEntropy assuming reusing the existing table */ memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); if (disableLiteralCompression) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); /* small ? don't even attempt compression (speed opt) */ # define COMPRESS_LITERALS_SIZE_MIN 63 { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN; if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); } RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression"); { HUF_repeat repeat = prevHuf->repeatMode; int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0; if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1; cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, workspace, wkspSize, (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) : HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, workspace, wkspSize, (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2); if (repeat != HUF_repeat_none) { /* reused the existing table */ hType = set_repeat; } } if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) { memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); } if (cLitSize==1) { memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize); } if (hType == set_compressed) { /* using a newly constructed table */ nextHuf->repeatMode = HUF_repeat_check; } /* Build header */ switch(lhSize) { case 3: /* 2 - 2 - 10 - 10 */ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14); MEM_writeLE24(ostart, lhc); break; } case 4: /* 2 - 2 - 14 - 14 */ { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18); MEM_writeLE32(ostart, lhc); break; } case 5: /* 2 - 2 - 18 - 18 */ { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22); MEM_writeLE32(ostart, lhc); ostart[4] = (BYTE)(cLitSize >> 10); break; } default: /* not possible : lhSize is {3,4,5} */ assert(0); } return lhSize+cLitSize; } void ZSTD_seqToCodes(const seqStore_t* seqStorePtr) { const seqDef* const sequences = seqStorePtr->sequencesStart; BYTE* const llCodeTable = seqStorePtr->llCode; BYTE* const ofCodeTable = seqStorePtr->ofCode; BYTE* const mlCodeTable = seqStorePtr->mlCode; U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); U32 u; assert(nbSeq <= seqStorePtr->maxNbSeq); for (u=0; u<nbSeq; u++) { U32 const llv = sequences[u].litLength; U32 const mlv = sequences[u].matchLength; llCodeTable[u] = (BYTE)ZSTD_LLcode(llv); ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset); mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv); } if (seqStorePtr->longLengthID==1) llCodeTable[seqStorePtr->longLengthPos] = MaxLL; if (seqStorePtr->longLengthID==2) mlCodeTable[seqStorePtr->longLengthPos] = MaxML; } /** * -log2(x / 256) lookup table for x in [0, 256). * If x == 0: Return 0 * Else: Return floor(-log2(x / 256) * 256) */ static unsigned const kInverseProbabilityLog256[256] = { 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162, 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889, 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734, 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626, 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542, 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473, 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415, 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366, 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322, 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282, 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247, 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215, 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185, 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157, 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132, 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108, 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85, 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64, 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44, 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25, 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7, 5, 4, 2, 1, }; /** * Returns the cost in bits of encoding the distribution described by count * using the entropy bound. */ static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total) { unsigned cost = 0; unsigned s; for (s = 0; s <= max; ++s) { unsigned norm = (unsigned)((256 * count[s]) / total); if (count[s] != 0 && norm == 0) norm = 1; assert(count[s] < total); cost += count[s] * kInverseProbabilityLog256[norm]; } return cost >> 8; } /** * Returns the cost in bits of encoding the distribution in count using the * table described by norm. The max symbol support by norm is assumed >= max. * norm must be valid for every symbol with non-zero probability in count. */ static size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog, unsigned const* count, unsigned const max) { unsigned const shift = 8 - accuracyLog; size_t cost = 0; unsigned s; assert(accuracyLog <= 8); for (s = 0; s <= max; ++s) { unsigned const normAcc = norm[s] != -1 ? norm[s] : 1; unsigned const norm256 = normAcc << shift; assert(norm256 > 0); assert(norm256 < 256); cost += count[s] * kInverseProbabilityLog256[norm256]; } return cost >> 8; } static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) { void const* ptr = ctable; U16 const* u16ptr = (U16 const*)ptr; U32 const maxSymbolValue = MEM_read16(u16ptr + 1); return maxSymbolValue; } /** * Returns the cost in bits of encoding the distribution in count using ctable. * Returns an error if ctable cannot represent all the symbols in count. */ static size_t ZSTD_fseBitCost( FSE_CTable const* ctable, unsigned const* count, unsigned const max) { unsigned const kAccuracyLog = 8; size_t cost = 0; unsigned s; FSE_CState_t cstate; FSE_initCState(&cstate, ctable); RETURN_ERROR_IF(ZSTD_getFSEMaxSymbolValue(ctable) < max, GENERIC, "Repeat FSE_CTable has maxSymbolValue %u < %u", ZSTD_getFSEMaxSymbolValue(ctable), max); for (s = 0; s <= max; ++s) { unsigned const tableLog = cstate.stateLog; unsigned const badCost = (tableLog + 1) << kAccuracyLog; unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog); if (count[s] == 0) continue; RETURN_ERROR_IF(bitCost >= badCost, GENERIC, "Repeat FSE_CTable has Prob[%u] == 0", s); cost += count[s] * bitCost; } return cost >> kAccuracyLog; } /** * Returns the cost in bytes of encoding the normalized count header. * Returns an error if any of the helper functions return an error. */ static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max, size_t const nbSeq, unsigned const FSELog) { BYTE wksp[FSE_NCOUNTBOUND]; S16 norm[MaxSeq + 1]; const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max)); return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog); } typedef enum { ZSTD_defaultDisallowed = 0, ZSTD_defaultAllowed = 1 } ZSTD_defaultPolicy_e; MEM_STATIC symbolEncodingType_e ZSTD_selectEncodingType( FSE_repeat* repeatMode, unsigned const* count, unsigned const max, size_t const mostFrequent, size_t nbSeq, unsigned const FSELog, FSE_CTable const* prevCTable, short const* defaultNorm, U32 defaultNormLog, ZSTD_defaultPolicy_e const isDefaultAllowed, ZSTD_strategy const strategy) { ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0); if (mostFrequent == nbSeq) { *repeatMode = FSE_repeat_none; if (isDefaultAllowed && nbSeq <= 2) { /* Prefer set_basic over set_rle when there are 2 or less symbols, * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol. * If basic encoding isn't possible, always choose RLE. */ DEBUGLOG(5, "Selected set_basic"); return set_basic; } DEBUGLOG(5, "Selected set_rle"); return set_rle; } if (strategy < ZSTD_lazy) { if (isDefaultAllowed) { size_t const staticFse_nbSeq_max = 1000; size_t const mult = 10 - strategy; size_t const baseLog = 3; size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */ assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */ assert(mult <= 9 && mult >= 7); if ( (*repeatMode == FSE_repeat_valid) && (nbSeq < staticFse_nbSeq_max) ) { DEBUGLOG(5, "Selected set_repeat"); return set_repeat; } if ( (nbSeq < dynamicFse_nbSeq_min) || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) { DEBUGLOG(5, "Selected set_basic"); /* The format allows default tables to be repeated, but it isn't useful. * When using simple heuristics to select encoding type, we don't want * to confuse these tables with dictionaries. When running more careful * analysis, we don't need to waste time checking both repeating tables * and default tables. */ *repeatMode = FSE_repeat_none; return set_basic; } } } else { size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC); size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC); size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog); size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq); if (isDefaultAllowed) { assert(!ZSTD_isError(basicCost)); assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost))); } assert(!ZSTD_isError(NCountCost)); assert(compressedCost < ERROR(maxCode)); DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u", (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost); if (basicCost <= repeatCost && basicCost <= compressedCost) { DEBUGLOG(5, "Selected set_basic"); assert(isDefaultAllowed); *repeatMode = FSE_repeat_none; return set_basic; } if (repeatCost <= compressedCost) { DEBUGLOG(5, "Selected set_repeat"); assert(!ZSTD_isError(repeatCost)); return set_repeat; } assert(compressedCost < basicCost && compressedCost < repeatCost); } DEBUGLOG(5, "Selected set_compressed"); *repeatMode = FSE_repeat_check; return set_compressed; } MEM_STATIC size_t ZSTD_buildCTable(void* dst, size_t dstCapacity, FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type, unsigned* count, U32 max, const BYTE* codeTable, size_t nbSeq, const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, const FSE_CTable* prevCTable, size_t prevCTableSize, void* workspace, size_t workspaceSize) { BYTE* op = (BYTE*)dst; const BYTE* const oend = op + dstCapacity; DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity); switch (type) { case set_rle: FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max)); RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall); *op = codeTable[0]; return 1; case set_repeat: memcpy(nextCTable, prevCTable, prevCTableSize); return 0; case set_basic: FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */ return 0; case set_compressed: { S16 norm[MaxSeq + 1]; size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); if (count[codeTable[nbSeq-1]] > 1) { count[codeTable[nbSeq-1]]--; nbSeq_1--; } assert(nbSeq_1 > 1); FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max)); { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */ FORWARD_IF_ERROR(NCountSize); FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, workspace, workspaceSize)); return NCountSize; } } default: assert(0); RETURN_ERROR(GENERIC); } } FORCE_INLINE_TEMPLATE size_t ZSTD_encodeSequences_body( void* dst, size_t dstCapacity, FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, seqDef const* sequences, size_t nbSeq, int longOffsets) { BIT_CStream_t blockStream; FSE_CState_t stateMatchLength; FSE_CState_t stateOffsetBits; FSE_CState_t stateLitLength; RETURN_ERROR_IF( ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)), dstSize_tooSmall, "not enough space remaining"); DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)", (int)(blockStream.endPtr - blockStream.startPtr), (unsigned)dstCapacity); /* first symbols */ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); if (longOffsets) { U32 const ofBits = ofCodeTable[nbSeq-1]; int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); if (extraBits) { BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits); BIT_flushBits(&blockStream); } BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits, ofBits - extraBits); } else { BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); } BIT_flushBits(&blockStream); { size_t n; for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */ BYTE const llCode = llCodeTable[n]; BYTE const ofCode = ofCodeTable[n]; BYTE const mlCode = mlCodeTable[n]; U32 const llBits = LL_bits[llCode]; U32 const ofBits = ofCode; U32 const mlBits = ML_bits[mlCode]; DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u", (unsigned)sequences[n].litLength, (unsigned)sequences[n].matchLength + MINMATCH, (unsigned)sequences[n].offset); /* 32b*/ /* 64b*/ /* (7)*/ /* (7)*/ FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */ FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */ if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/ FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */ if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog))) BIT_flushBits(&blockStream); /* (7)*/ BIT_addBits(&blockStream, sequences[n].litLength, llBits); if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); if (longOffsets) { int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); if (extraBits) { BIT_addBits(&blockStream, sequences[n].offset, extraBits); BIT_flushBits(&blockStream); /* (7)*/ } BIT_addBits(&blockStream, sequences[n].offset >> extraBits, ofBits - extraBits); /* 31 */ } else { BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ } BIT_flushBits(&blockStream); /* (7)*/ DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr)); } } DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog); FSE_flushCState(&blockStream, &stateMatchLength); DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog); FSE_flushCState(&blockStream, &stateOffsetBits); DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog); FSE_flushCState(&blockStream, &stateLitLength); { size_t const streamSize = BIT_closeCStream(&blockStream); RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space"); return streamSize; } } static size_t ZSTD_encodeSequences_default( void* dst, size_t dstCapacity, FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, seqDef const* sequences, size_t nbSeq, int longOffsets) { return ZSTD_encodeSequences_body(dst, dstCapacity, CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets); } #if DYNAMIC_BMI2 static TARGET_ATTRIBUTE("bmi2") size_t ZSTD_encodeSequences_bmi2( void* dst, size_t dstCapacity, FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, seqDef const* sequences, size_t nbSeq, int longOffsets) { return ZSTD_encodeSequences_body(dst, dstCapacity, CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets); } #endif static size_t ZSTD_encodeSequences( void* dst, size_t dstCapacity, FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2) { DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity); #if DYNAMIC_BMI2 if (bmi2) { return ZSTD_encodeSequences_bmi2(dst, dstCapacity, CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets); } #endif (void)bmi2; return ZSTD_encodeSequences_default(dst, dstCapacity, CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets); } static int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams) { switch (cctxParams->literalCompressionMode) { case ZSTD_lcm_huffman: return 0; case ZSTD_lcm_uncompressed: return 1; default: assert(0 /* impossible: pre-validated */); /* fall-through */ case ZSTD_lcm_auto: return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0); } } /* ZSTD_compressSequences_internal(): * actually compresses both literals and sequences */ MEM_STATIC size_t ZSTD_compressSequences_internal(seqStore_t* seqStorePtr, const ZSTD_entropyCTables_t* prevEntropy, ZSTD_entropyCTables_t* nextEntropy, const ZSTD_CCtx_params* cctxParams, void* dst, size_t dstCapacity, void* workspace, size_t wkspSize, const int bmi2) { const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN; ZSTD_strategy const strategy = cctxParams->cParams.strategy; unsigned count[MaxSeq+1]; FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable; FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable; FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable; U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */ const seqDef* const sequences = seqStorePtr->sequencesStart; const BYTE* const ofCodeTable = seqStorePtr->ofCode; const BYTE* const llCodeTable = seqStorePtr->llCode; const BYTE* const mlCodeTable = seqStorePtr->mlCode; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstCapacity; BYTE* op = ostart; size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart; BYTE* seqHead; BYTE* lastNCount = NULL; ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog))); DEBUGLOG(5, "ZSTD_compressSequences_internal"); /* Compress literals */ { const BYTE* const literals = seqStorePtr->litStart; size_t const litSize = seqStorePtr->lit - literals; size_t const cSize = ZSTD_compressLiterals( &prevEntropy->huf, &nextEntropy->huf, cctxParams->cParams.strategy, ZSTD_disableLiteralsCompression(cctxParams), op, dstCapacity, literals, litSize, workspace, wkspSize, bmi2); FORWARD_IF_ERROR(cSize); assert(cSize <= dstCapacity); op += cSize; } /* Sequences Header */ RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/, dstSize_tooSmall); if (nbSeq < 0x7F) *op++ = (BYTE)nbSeq; else if (nbSeq < LONGNBSEQ) op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2; else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3; if (nbSeq==0) { /* Copy the old tables over as if we repeated them */ memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse)); return op - ostart; } /* seqHead : flags for FSE encoding type */ seqHead = op++; /* convert length/distances into codes */ ZSTD_seqToCodes(seqStorePtr); /* build CTable for Literal Lengths */ { unsigned max = MaxLL; size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, workspace, wkspSize); /* can't fail */ DEBUGLOG(5, "Building LL table"); nextEntropy->fse.litlength_repeatMode = prevEntropy->fse.litlength_repeatMode; LLtype = ZSTD_selectEncodingType(&nextEntropy->fse.litlength_repeatMode, count, max, mostFrequent, nbSeq, LLFSELog, prevEntropy->fse.litlengthCTable, LL_defaultNorm, LL_defaultNormLog, ZSTD_defaultAllowed, strategy); assert(set_basic < set_compressed && set_rle < set_compressed); assert(!(LLtype < set_compressed && nextEntropy->fse.litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype, count, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL, prevEntropy->fse.litlengthCTable, sizeof(prevEntropy->fse.litlengthCTable), workspace, wkspSize); FORWARD_IF_ERROR(countSize); if (LLtype == set_compressed) lastNCount = op; op += countSize; } } /* build CTable for Offsets */ { unsigned max = MaxOff; size_t const mostFrequent = HIST_countFast_wksp(count, &max, ofCodeTable, nbSeq, workspace, wkspSize); /* can't fail */ /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed; DEBUGLOG(5, "Building OF table"); nextEntropy->fse.offcode_repeatMode = prevEntropy->fse.offcode_repeatMode; Offtype = ZSTD_selectEncodingType(&nextEntropy->fse.offcode_repeatMode, count, max, mostFrequent, nbSeq, OffFSELog, prevEntropy->fse.offcodeCTable, OF_defaultNorm, OF_defaultNormLog, defaultPolicy, strategy); assert(!(Offtype < set_compressed && nextEntropy->fse.offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype, count, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, prevEntropy->fse.offcodeCTable, sizeof(prevEntropy->fse.offcodeCTable), workspace, wkspSize); FORWARD_IF_ERROR(countSize); if (Offtype == set_compressed) lastNCount = op; op += countSize; } } /* build CTable for MatchLengths */ { unsigned max = MaxML; size_t const mostFrequent = HIST_countFast_wksp(count, &max, mlCodeTable, nbSeq, workspace, wkspSize); /* can't fail */ DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op)); nextEntropy->fse.matchlength_repeatMode = prevEntropy->fse.matchlength_repeatMode; MLtype = ZSTD_selectEncodingType(&nextEntropy->fse.matchlength_repeatMode, count, max, mostFrequent, nbSeq, MLFSELog, prevEntropy->fse.matchlengthCTable, ML_defaultNorm, ML_defaultNormLog, ZSTD_defaultAllowed, strategy); assert(!(MLtype < set_compressed && nextEntropy->fse.matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype, count, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML, prevEntropy->fse.matchlengthCTable, sizeof(prevEntropy->fse.matchlengthCTable), workspace, wkspSize); FORWARD_IF_ERROR(countSize); if (MLtype == set_compressed) lastNCount = op; op += countSize; } } *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2)); { size_t const bitstreamSize = ZSTD_encodeSequences( op, oend - op, CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets, bmi2); FORWARD_IF_ERROR(bitstreamSize); op += bitstreamSize; /* zstd versions <= 1.3.4 mistakenly report corruption when * FSE_readNCount() receives a buffer < 4 bytes. * Fixed by https://github.com/facebook/zstd/pull/1146. * This can happen when the last set_compressed table present is 2 * bytes and the bitstream is only one byte. * In this exceedingly rare case, we will simply emit an uncompressed * block, since it isn't worth optimizing. */ if (lastNCount && (op - lastNCount) < 4) { /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */ assert(op - lastNCount == 3); DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by " "emitting an uncompressed block."); return 0; } } DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart)); return op - ostart; } MEM_STATIC size_t ZSTD_compressSequences(seqStore_t* seqStorePtr, const ZSTD_entropyCTables_t* prevEntropy, ZSTD_entropyCTables_t* nextEntropy, const ZSTD_CCtx_params* cctxParams, void* dst, size_t dstCapacity, size_t srcSize, void* workspace, size_t wkspSize, int bmi2) { size_t const cSize = ZSTD_compressSequences_internal( seqStorePtr, prevEntropy, nextEntropy, cctxParams, dst, dstCapacity, workspace, wkspSize, bmi2); if (cSize == 0) return 0; /* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block. * Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block. */ if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity)) return 0; /* block not compressed */ FORWARD_IF_ERROR(cSize); /* Check compressibility */ { size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy); if (cSize >= maxCSize) return 0; /* block not compressed */ } return cSize; } /* ZSTD_selectBlockCompressor() : * Not static, but internal use only (used by long distance matcher) * assumption : strat is a valid strategy */ ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode) { static const ZSTD_blockCompressor blockCompressor[3][ZSTD_STRATEGY_MAX+1] = { { ZSTD_compressBlock_fast /* default for 0 */, ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btultra, ZSTD_compressBlock_btultra2 }, { ZSTD_compressBlock_fast_extDict /* default for 0 */, ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict, ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btultra_extDict, ZSTD_compressBlock_btultra_extDict }, { ZSTD_compressBlock_fast_dictMatchState /* default for 0 */, ZSTD_compressBlock_fast_dictMatchState, ZSTD_compressBlock_doubleFast_dictMatchState, ZSTD_compressBlock_greedy_dictMatchState, ZSTD_compressBlock_lazy_dictMatchState, ZSTD_compressBlock_lazy2_dictMatchState, ZSTD_compressBlock_btlazy2_dictMatchState, ZSTD_compressBlock_btopt_dictMatchState, ZSTD_compressBlock_btultra_dictMatchState, ZSTD_compressBlock_btultra_dictMatchState } }; ZSTD_blockCompressor selectedCompressor; ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1); assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat)); selectedCompressor = blockCompressor[(int)dictMode][(int)strat]; assert(selectedCompressor != NULL); return selectedCompressor; } static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr, const BYTE* anchor, size_t lastLLSize) { memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } void ZSTD_resetSeqStore(seqStore_t* ssPtr) { ssPtr->lit = ssPtr->litStart; ssPtr->sequences = ssPtr->sequencesStart; ssPtr->longLengthID = 0; } static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { ZSTD_matchState_t* const ms = &zc->blockState.matchState; size_t cSize; DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)", (unsigned)dstCapacity, (unsigned)ms->window.dictLimit, (unsigned)ms->nextToUpdate); assert(srcSize <= ZSTD_BLOCKSIZE_MAX); /* Assert that we have correctly flushed the ctx params into the ms's copy */ ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams); if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) { ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch); cSize = 0; goto out; /* don't even attempt compression below a certain srcSize */ } ZSTD_resetSeqStore(&(zc->seqStore)); /* required for optimal parser to read stats from dictionary */ ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy; /* tell the optimal parser how we expect to compress literals */ ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode; /* a gap between an attached dict and the current window is not safe, * they must remain adjacent, * and when that stops being the case, the dict must be unset */ assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit); /* limited update after a very long match */ { const BYTE* const base = ms->window.base; const BYTE* const istart = (const BYTE*)src; const U32 current = (U32)(istart-base); if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */ if (current > ms->nextToUpdate + 384) ms->nextToUpdate = current - MIN(192, (U32)(current - ms->nextToUpdate - 384)); } /* select and store sequences */ { ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms); size_t lastLLSize; { int i; for (i = 0; i < ZSTD_REP_NUM; ++i) zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i]; } if (zc->externSeqStore.pos < zc->externSeqStore.size) { assert(!zc->appliedParams.ldmParams.enableLdm); /* Updates ldmSeqStore.pos */ lastLLSize = ZSTD_ldm_blockCompress(&zc->externSeqStore, ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); assert(zc->externSeqStore.pos <= zc->externSeqStore.size); } else if (zc->appliedParams.ldmParams.enableLdm) { rawSeqStore_t ldmSeqStore = {NULL, 0, 0, 0}; ldmSeqStore.seq = zc->ldmSequences; ldmSeqStore.capacity = zc->maxNbLdmSequences; /* Updates ldmSeqStore.size */ FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore, &zc->appliedParams.ldmParams, src, srcSize)); /* Updates ldmSeqStore.pos */ lastLLSize = ZSTD_ldm_blockCompress(&ldmSeqStore, ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); assert(ldmSeqStore.pos == ldmSeqStore.size); } else { /* not long range mode */ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, dictMode); lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); } { const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize; ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize); } } /* encode sequences and literals */ cSize = ZSTD_compressSequences(&zc->seqStore, &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, &zc->appliedParams, dst, dstCapacity, srcSize, zc->entropyWorkspace, HUF_WORKSPACE_SIZE /* statically allocated in resetCCtx */, zc->bmi2); out: if (!ZSTD_isError(cSize) && cSize != 0) { /* confirm repcodes and entropy tables when emitting a compressed block */ ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock; zc->blockState.prevCBlock = zc->blockState.nextCBlock; zc->blockState.nextCBlock = tmp; } /* We check that dictionaries have offset codes available for the first * block. After the first block, the offcode table might not have large * enough codes to represent the offsets in the data. */ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; return cSize; } /*! ZSTD_compress_frameChunk() : * Compress a chunk of data into one or multiple blocks. * All blocks will be terminated, all input will be consumed. * Function will issue an error if there is not enough `dstCapacity` to hold the compressed content. * Frame is supposed already started (header already produced) * @return : compressed size, or an error code */ static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastFrameChunk) { size_t blockSize = cctx->blockSize; size_t remaining = srcSize; const BYTE* ip = (const BYTE*)src; BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog; assert(cctx->appliedParams.cParams.windowLog <= 31); DEBUGLOG(5, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize); if (cctx->appliedParams.fParams.checksumFlag && srcSize) XXH64_update(&cctx->xxhState, src, srcSize); while (remaining) { ZSTD_matchState_t* const ms = &cctx->blockState.matchState; U32 const lastBlock = lastFrameChunk & (blockSize >= remaining); RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE, dstSize_tooSmall, "not enough space to store compressed block"); if (remaining < blockSize) blockSize = remaining; if (ZSTD_window_needOverflowCorrection(ms->window, ip + blockSize)) { U32 const cycleLog = ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy); U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip); ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); ZSTD_reduceIndex(cctx, correction); if (ms->nextToUpdate < correction) ms->nextToUpdate = 0; else ms->nextToUpdate -= correction; ms->loadedDictEnd = 0; ms->dictMatchState = NULL; } ZSTD_window_enforceMaxDist(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState); if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit; { size_t cSize = ZSTD_compressBlock_internal(cctx, op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, ip, blockSize); FORWARD_IF_ERROR(cSize); if (cSize == 0) { /* block is not compressible */ cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); FORWARD_IF_ERROR(cSize); } else { U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); MEM_writeLE24(op, cBlockHeader24); cSize += ZSTD_blockHeaderSize; } ip += blockSize; assert(remaining >= blockSize); remaining -= blockSize; op += cSize; assert(dstCapacity >= cSize); dstCapacity -= cSize; DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u", (unsigned)cSize); } } if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending; return op-ostart; } static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity, ZSTD_CCtx_params params, U64 pledgedSrcSize, U32 dictID) { BYTE* const op = (BYTE*)dst; U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */ U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */ U32 const checksumFlag = params.fParams.checksumFlag>0; U32 const windowSize = (U32)1 << params.cParams.windowLog; U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize); BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3); U32 const fcsCode = params.fParams.contentSizeFlag ? (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */ BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) ); size_t pos=0; assert(!(params.fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)); RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall); DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u", !params.fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode); if (params.format == ZSTD_f_zstd1) { MEM_writeLE32(dst, ZSTD_MAGICNUMBER); pos = 4; } op[pos++] = frameHeaderDescriptionByte; if (!singleSegment) op[pos++] = windowLogByte; switch(dictIDSizeCode) { default: assert(0); /* impossible */ case 0 : break; case 1 : op[pos] = (BYTE)(dictID); pos++; break; case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break; case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break; } switch(fcsCode) { default: assert(0); /* impossible */ case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break; case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break; case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break; case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break; } return pos; } /* ZSTD_writeLastEmptyBlock() : * output an empty Block with end-of-frame mark to complete a frame * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize) */ size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity) { RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall); { U32 const cBlockHeader24 = 1 /*lastBlock*/ + (((U32)bt_raw)<<1); /* 0 size */ MEM_writeLE24(dst, cBlockHeader24); return ZSTD_blockHeaderSize; } } size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq) { RETURN_ERROR_IF(cctx->stage != ZSTDcs_init, stage_wrong); RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm, parameter_unsupported); cctx->externSeqStore.seq = seq; cctx->externSeqStore.size = nbSeq; cctx->externSeqStore.capacity = nbSeq; cctx->externSeqStore.pos = 0; return 0; } static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 frame, U32 lastFrameChunk) { ZSTD_matchState_t* const ms = &cctx->blockState.matchState; size_t fhSize = 0; DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u", cctx->stage, (unsigned)srcSize); RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong, "missing init (ZSTD_compressBegin)"); if (frame && (cctx->stage==ZSTDcs_init)) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, cctx->pledgedSrcSizePlusOne-1, cctx->dictID); FORWARD_IF_ERROR(fhSize); dstCapacity -= fhSize; dst = (char*)dst + fhSize; cctx->stage = ZSTDcs_ongoing; } if (!srcSize) return fhSize; /* do not generate an empty block if no input */ if (!ZSTD_window_update(&ms->window, src, srcSize)) { ms->nextToUpdate = ms->window.dictLimit; } if (cctx->appliedParams.ldmParams.enableLdm) { ZSTD_window_update(&cctx->ldmState.window, src, srcSize); } if (!frame) { /* overflow check and correction for block mode */ if (ZSTD_window_needOverflowCorrection(ms->window, (const char*)src + srcSize)) { U32 const cycleLog = ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy); U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, 1 << cctx->appliedParams.cParams.windowLog, src); ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); ZSTD_reduceIndex(cctx, correction); if (ms->nextToUpdate < correction) ms->nextToUpdate = 0; else ms->nextToUpdate -= correction; ms->loadedDictEnd = 0; ms->dictMatchState = NULL; } } DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize); { size_t const cSize = frame ? ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) : ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize); FORWARD_IF_ERROR(cSize); cctx->consumedSrcSize += srcSize; cctx->producedCSize += (cSize + fhSize); assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); RETURN_ERROR_IF( cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne, srcSize_wrong, "error : pledgedSrcSize = %u, while realSrcSize >= %u", (unsigned)cctx->pledgedSrcSizePlusOne-1, (unsigned)cctx->consumedSrcSize); } return cSize + fhSize; } } size_t ZSTD_compressContinue (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize); return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */); } size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx) { ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams; assert(!ZSTD_checkCParams(cParams)); return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog); } size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const blockSizeMax = ZSTD_getBlockSize(cctx); RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong); return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */); } /*! ZSTD_loadDictionaryContent() : * @return : 0, or an error code */ static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const void* src, size_t srcSize, ZSTD_dictTableLoadMethod_e dtlm) { const BYTE* const ip = (const BYTE*) src; const BYTE* const iend = ip + srcSize; ZSTD_window_update(&ms->window, src, srcSize); ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base); /* Assert that we the ms params match the params we're being given */ ZSTD_assertEqualCParams(params->cParams, ms->cParams); if (srcSize <= HASH_READ_SIZE) return 0; switch(params->cParams.strategy) { case ZSTD_fast: ZSTD_fillHashTable(ms, iend, dtlm); break; case ZSTD_dfast: ZSTD_fillDoubleHashTable(ms, iend, dtlm); break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: if (srcSize >= HASH_READ_SIZE) ZSTD_insertAndFindFirstIndex(ms, iend-HASH_READ_SIZE); break; case ZSTD_btlazy2: /* we want the dictionary table fully sorted */ case ZSTD_btopt: case ZSTD_btultra: case ZSTD_btultra2: if (srcSize >= HASH_READ_SIZE) ZSTD_updateTree(ms, iend-HASH_READ_SIZE, iend); break; default: assert(0); /* not possible : not a valid strategy id */ } ms->nextToUpdate = (U32)(iend - ms->window.base); return 0; } /* Dictionaries that assign zero probability to symbols that show up causes problems when FSE encoding. Refuse dictionaries that assign zero probability to symbols that we may encounter during compression. NOTE: This behavior is not standard and could be improved in the future. */ static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) { U32 s; RETURN_ERROR_IF(dictMaxSymbolValue < maxSymbolValue, dictionary_corrupted); for (s = 0; s <= maxSymbolValue; ++s) { RETURN_ERROR_IF(normalizedCounter[s] == 0, dictionary_corrupted); } return 0; } /* Dictionary format : * See : * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format */ /*! ZSTD_loadZstdDictionary() : * @return : dictID, or an error code * assumptions : magic number supposed already checked * dictSize supposed > 8 */ static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs, ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const void* dict, size_t dictSize, ZSTD_dictTableLoadMethod_e dtlm, void* workspace) { const BYTE* dictPtr = (const BYTE*)dict; const BYTE* const dictEnd = dictPtr + dictSize; short offcodeNCount[MaxOff+1]; unsigned offcodeMaxValue = MaxOff; size_t dictID; ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog))); assert(dictSize > 8); assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY); dictPtr += 4; /* skip magic number */ dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr); dictPtr += 4; { unsigned maxSymbolValue = 255; size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted); RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted); dictPtr += hufHeaderSize; } { unsigned offcodeLog; size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted); RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted); /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */ /* fill all offset symbols to avoid garbage at end of table */ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( bs->entropy.fse.offcodeCTable, offcodeNCount, MaxOff, offcodeLog, workspace, HUF_WORKSPACE_SIZE)), dictionary_corrupted); dictPtr += offcodeHeaderSize; } { short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog; size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted); RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted); /* Every match length code must have non-zero probability */ FORWARD_IF_ERROR( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML)); RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( bs->entropy.fse.matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, workspace, HUF_WORKSPACE_SIZE)), dictionary_corrupted); dictPtr += matchlengthHeaderSize; } { short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog; size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted); RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted); /* Every literal length code must have non-zero probability */ FORWARD_IF_ERROR( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL)); RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( bs->entropy.fse.litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, workspace, HUF_WORKSPACE_SIZE)), dictionary_corrupted); dictPtr += litlengthHeaderSize; } RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted); bs->rep[0] = MEM_readLE32(dictPtr+0); bs->rep[1] = MEM_readLE32(dictPtr+4); bs->rep[2] = MEM_readLE32(dictPtr+8); dictPtr += 12; { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); U32 offcodeMax = MaxOff; if (dictContentSize <= ((U32)-1) - 128 KB) { U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */ } /* All offset values <= dictContentSize + 128 KB must be representable */ FORWARD_IF_ERROR(ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff))); /* All repCodes must be <= dictContentSize and != 0*/ { U32 u; for (u=0; u<3; u++) { RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted); RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted); } } bs->entropy.huf.repeatMode = HUF_repeat_valid; bs->entropy.fse.offcode_repeatMode = FSE_repeat_valid; bs->entropy.fse.matchlength_repeatMode = FSE_repeat_valid; bs->entropy.fse.litlength_repeatMode = FSE_repeat_valid; FORWARD_IF_ERROR(ZSTD_loadDictionaryContent(ms, params, dictPtr, dictContentSize, dtlm)); return dictID; } } /** ZSTD_compress_insertDictionary() : * @return : dictID, or an error code */ static size_t ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs, ZSTD_matchState_t* ms, const ZSTD_CCtx_params* params, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, ZSTD_dictTableLoadMethod_e dtlm, void* workspace) { DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize); if ((dict==NULL) || (dictSize<=8)) return 0; ZSTD_reset_compressedBlockState(bs); /* dict restricted modes */ if (dictContentType == ZSTD_dct_rawContent) return ZSTD_loadDictionaryContent(ms, params, dict, dictSize, dtlm); if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) { if (dictContentType == ZSTD_dct_auto) { DEBUGLOG(4, "raw content dictionary detected"); return ZSTD_loadDictionaryContent(ms, params, dict, dictSize, dtlm); } RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong); assert(0); /* impossible */ } /* dict as full zstd dictionary */ return ZSTD_loadZstdDictionary(bs, ms, params, dict, dictSize, dtlm, workspace); } /*! ZSTD_compressBegin_internal() : * @return : 0, or an error code */ static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, ZSTD_dictTableLoadMethod_e dtlm, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params.cParams.windowLog); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (cdict && cdict->dictContentSize>0) { return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff); } FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, ZSTDcrp_continue, zbuff) ); { size_t const dictID = ZSTD_compress_insertDictionary( cctx->blockState.prevCBlock, &cctx->blockState.matchState, ¶ms, dict, dictSize, dictContentType, dtlm, cctx->entropyWorkspace); FORWARD_IF_ERROR(dictID); assert(dictID <= (size_t)(U32)-1); cctx->dictID = (U32)dictID; } return 0; } size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, ZSTD_dictTableLoadMethod_e dtlm, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params.cParams.windowLog); /* compression parameters verification and optimization */ FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) ); return ZSTD_compressBegin_internal(cctx, dict, dictSize, dictContentType, dtlm, cdict, params, pledgedSrcSize, ZSTDb_not_buffered); } /*! ZSTD_compressBegin_advanced() : * @return : 0, or an error code */ size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); return ZSTD_compressBegin_advanced_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL /*cdict*/, cctxParams, pledgedSrcSize); } size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize); ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize); return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered); } size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel) { return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); } /*! ZSTD_writeEpilogue() : * Ends a frame. * @return : nb of bytes written into dst (or an error code) */ static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity) { BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; size_t fhSize = 0; DEBUGLOG(4, "ZSTD_writeEpilogue"); RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing"); /* special case : empty frame */ if (cctx->stage == ZSTDcs_init) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0); FORWARD_IF_ERROR(fhSize); dstCapacity -= fhSize; op += fhSize; cctx->stage = ZSTDcs_ongoing; } if (cctx->stage != ZSTDcs_ending) { /* write one last empty block, make it the "last" block */ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0; RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall); MEM_writeLE32(op, cBlockHeader24); op += ZSTD_blockHeaderSize; dstCapacity -= ZSTD_blockHeaderSize; } if (cctx->appliedParams.fParams.checksumFlag) { U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall); DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum); MEM_writeLE32(op, checksum); op += 4; } cctx->stage = ZSTDcs_created; /* return to "created but no init" status */ return op-ostart; } size_t ZSTD_compressEnd (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t endResult; size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 1 /* last chunk */); FORWARD_IF_ERROR(cSize); endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize); FORWARD_IF_ERROR(endResult); assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); DEBUGLOG(4, "end of frame : controlling src size"); RETURN_ERROR_IF( cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1, srcSize_wrong, "error : pledgedSrcSize = %u, while realSrcSize = %u", (unsigned)cctx->pledgedSrcSizePlusOne-1, (unsigned)cctx->consumedSrcSize); } return cSize + endResult; } static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); DEBUGLOG(4, "ZSTD_compress_internal"); return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, cctxParams); } size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { DEBUGLOG(4, "ZSTD_compress_advanced"); FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams)); return ZSTD_compress_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, params); } /* Internal */ size_t ZSTD_compress_advanced_internal( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_CCtx_params params) { DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize); FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, params, srcSize, ZSTDb_not_buffered) ); return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, srcSize + (!srcSize), dict ? dictSize : 0); ZSTD_CCtx_params cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); assert(params.fParams.contentSizeFlag == 1); return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, cctxParams); } size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize); assert(cctx != NULL); return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel); } size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { size_t result; ZSTD_CCtx ctxBody; ZSTD_initCCtx(&ctxBody, ZSTD_defaultCMem); result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel); ZSTD_freeCCtxContent(&ctxBody); /* can't free ctxBody itself, as it's on stack; free only heap content */ return result; } /* ===== Dictionary API ===== */ /*! ZSTD_estimateCDictSize_advanced() : * Estimate amount of memory that will be needed to create a dictionary with following arguments */ size_t ZSTD_estimateCDictSize_advanced( size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod) { DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict)); return sizeof(ZSTD_CDict) + HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); } size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); } size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support sizeof on NULL */ DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict)); return cdict->workspaceSize + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict); } static size_t ZSTD_initCDict_internal( ZSTD_CDict* cdict, const void* dictBuffer, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_compressionParameters cParams) { DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType); assert(!ZSTD_checkCParams(cParams)); cdict->matchState.cParams = cParams; if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) { cdict->dictBuffer = NULL; cdict->dictContent = dictBuffer; } else { void* const internalBuffer = ZSTD_malloc(dictSize, cdict->customMem); cdict->dictBuffer = internalBuffer; cdict->dictContent = internalBuffer; RETURN_ERROR_IF(!internalBuffer, memory_allocation); memcpy(internalBuffer, dictBuffer, dictSize); } cdict->dictContentSize = dictSize; /* Reset the state to no dictionary */ ZSTD_reset_compressedBlockState(&cdict->cBlockState); { void* const end = ZSTD_reset_matchState( &cdict->matchState, (U32*)cdict->workspace + HUF_WORKSPACE_SIZE_U32, &cParams, ZSTDcrp_continue, /* forCCtx */ 0); assert(end == (char*)cdict->workspace + cdict->workspaceSize); (void)end; } /* (Maybe) load the dictionary * Skips loading the dictionary if it is <= 8 bytes. */ { ZSTD_CCtx_params params; memset(¶ms, 0, sizeof(params)); params.compressionLevel = ZSTD_CLEVEL_DEFAULT; params.fParams.contentSizeFlag = 1; params.cParams = cParams; { size_t const dictID = ZSTD_compress_insertDictionary( &cdict->cBlockState, &cdict->matchState, ¶ms, cdict->dictContent, cdict->dictContentSize, dictContentType, ZSTD_dtlm_full, cdict->workspace); FORWARD_IF_ERROR(dictID); assert(dictID <= (size_t)(U32)-1); cdict->dictID = (U32)dictID; } } return 0; } ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_compressionParameters cParams, ZSTD_customMem customMem) { DEBUGLOG(3, "ZSTD_createCDict_advanced, mode %u", (unsigned)dictContentType); if (!customMem.customAlloc ^ !customMem.customFree) return NULL; { ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem); size_t const workspaceSize = HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0); void* const workspace = ZSTD_malloc(workspaceSize, customMem); if (!cdict || !workspace) { ZSTD_free(cdict, customMem); ZSTD_free(workspace, customMem); return NULL; } cdict->customMem = customMem; cdict->workspace = workspace; cdict->workspaceSize = workspaceSize; if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dictBuffer, dictSize, dictLoadMethod, dictContentType, cParams) )) { ZSTD_freeCDict(cdict); return NULL; } return cdict; } } ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, cParams, ZSTD_defaultCMem); } ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, cParams, ZSTD_defaultCMem); } size_t ZSTD_freeCDict(ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support free on NULL */ { ZSTD_customMem const cMem = cdict->customMem; ZSTD_free(cdict->workspace, cMem); ZSTD_free(cdict->dictBuffer, cMem); ZSTD_free(cdict, cMem); return 0; } } /*! ZSTD_initStaticCDict_advanced() : * Generate a digested dictionary in provided memory area. * workspace: The memory area to emplace the dictionary into. * Provided pointer must 8-bytes aligned. * It must outlive dictionary usage. * workspaceSize: Use ZSTD_estimateCDictSize() * to determine how large workspace must be. * cParams : use ZSTD_getCParams() to transform a compression level * into its relevants cParams. * @return : pointer to ZSTD_CDict*, or NULL if error (size too small) * Note : there is no corresponding "free" function. * Since workspace was allocated externally, it must be freed externally. */ const ZSTD_CDict* ZSTD_initStaticCDict( void* workspace, size_t workspaceSize, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_compressionParameters cParams) { size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0); size_t const neededSize = sizeof(ZSTD_CDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize) + HUF_WORKSPACE_SIZE + matchStateSize; ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace; void* ptr; if ((size_t)workspace & 7) return NULL; /* 8-aligned */ DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u", (unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize)); if (workspaceSize < neededSize) return NULL; if (dictLoadMethod == ZSTD_dlm_byCopy) { memcpy(cdict+1, dict, dictSize); dict = cdict+1; ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize; } else { ptr = cdict+1; } cdict->workspace = ptr; cdict->workspaceSize = HUF_WORKSPACE_SIZE + matchStateSize; if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dict, dictSize, ZSTD_dlm_byRef, dictContentType, cParams) )) return NULL; return cdict; } ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict) { assert(cdict != NULL); return cdict->matchState.cParams; } /* ZSTD_compressBegin_usingCDict_advanced() : * cdict must be != NULL */ size_t ZSTD_compressBegin_usingCDict_advanced( ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) { DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced"); RETURN_ERROR_IF(cdict==NULL, dictionary_wrong); { ZSTD_CCtx_params params = cctx->requestedParams; params.cParams = ZSTD_getCParamsFromCDict(cdict); /* Increase window log to fit the entire dictionary and source if the * source size is known. Limit the increase to 19, which is the * window log for compression level 1 with the largest source size. */ if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) { U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19); U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1; params.cParams.windowLog = MAX(params.cParams.windowLog, limitedSrcLog); } params.fParams = fParams; return ZSTD_compressBegin_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, cdict, params, pledgedSrcSize, ZSTDb_not_buffered); } } /* ZSTD_compressBegin_usingCDict() : * pledgedSrcSize=0 means "unknown" * if pledgedSrcSize>0, it will enable contentSizeFlag */ size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag); return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); } size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) { FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } /*! ZSTD_compress_usingCDict() : * Compression using a digested Dictionary. * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times. * Note that compression parameters are decided at CDict creation time * while frame parameters are hardcoded */ size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); } /* ****************************************************************** * Streaming ********************************************************************/ ZSTD_CStream* ZSTD_createCStream(void) { DEBUGLOG(3, "ZSTD_createCStream"); return ZSTD_createCStream_advanced(ZSTD_defaultCMem); } ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize) { return ZSTD_initStaticCCtx(workspace, workspaceSize); } ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem) { /* CStream and CCtx are now same object */ return ZSTD_createCCtx_advanced(customMem); } size_t ZSTD_freeCStream(ZSTD_CStream* zcs) { return ZSTD_freeCCtx(zcs); /* same object */ } /*====== Initialization ======*/ size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; } size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; } static size_t ZSTD_resetCStream_internal(ZSTD_CStream* cctx, const void* const dict, size_t const dictSize, ZSTD_dictContentType_e const dictContentType, const ZSTD_CDict* const cdict, ZSTD_CCtx_params params, unsigned long long const pledgedSrcSize) { DEBUGLOG(4, "ZSTD_resetCStream_internal"); /* Finalize the compression parameters */ params.cParams = ZSTD_getCParamsFromCCtxParams(¶ms, pledgedSrcSize, dictSize); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, dict, dictSize, dictContentType, ZSTD_dtlm_fast, cdict, params, pledgedSrcSize, ZSTDb_buffered) ); cctx->inToCompress = 0; cctx->inBuffPos = 0; cctx->inBuffTarget = cctx->blockSize + (cctx->blockSize == pledgedSrcSize); /* for small input: avoid automatic flush on reaching end of block, since it would require to add a 3-bytes null block to end frame */ cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0; cctx->streamStage = zcss_load; cctx->frameEnded = 0; return 0; /* ready to go */ } /* ZSTD_resetCStream(): * pledgedSrcSize == 0 means "unknown" */ size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss) { /* temporary : 0 interpreted as "unknown" during transition period. * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. * 0 will be interpreted as "empty" in the future. */ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); return 0; } /*! ZSTD_initCStream_internal() : * Note : for lib/compress only. Used by zstdmt_compress.c. * Assumption 1 : params are valid * Assumption 2 : either dict, or cdict, is defined, not both */ size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, const void* dict, size_t dictSize, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_initCStream_internal"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); zcs->requestedParams = params; assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (dict) { FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) ); } else { /* Dictionary is cleared if !cdict */ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) ); } return 0; } /* ZSTD_initCStream_usingCDict_advanced() : * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */ size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); zcs->requestedParams.fParams = fParams; FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) ); return 0; } /* note : cdict must outlive compression session */ size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict) { DEBUGLOG(4, "ZSTD_initCStream_usingCDict"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) ); return 0; } /* ZSTD_initCStream_advanced() : * pledgedSrcSize must be exact. * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. * dict is loaded with default parameters ZSTD_dm_auto and ZSTD_dlm_byCopy. */ size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pss) { /* for compatibility with older programs relying on this behavior. * Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. * This line will be removed in the future. */ U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; DEBUGLOG(4, "ZSTD_initCStream_advanced"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) ); zcs->requestedParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params); FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) ); return 0; } size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel) { DEBUGLOG(4, "ZSTD_initCStream_usingDict"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) ); FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) ); return 0; } size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss) { /* temporary : 0 interpreted as "unknown" during transition period. * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. * 0 will be interpreted as "empty" in the future. */ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; DEBUGLOG(4, "ZSTD_initCStream_srcSize"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) ); FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) ); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); return 0; } size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel) { DEBUGLOG(4, "ZSTD_initCStream"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) ); FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) ); return 0; } /*====== Compression ======*/ static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx) { size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos; if (hintInSize==0) hintInSize = cctx->blockSize; return hintInSize; } static size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const length = MIN(dstCapacity, srcSize); if (length) memcpy(dst, src, length); return length; } /** ZSTD_compressStream_generic(): * internal function for all *compressStream*() variants * non-static, because can be called from zstdmt_compress.c * @return : hint size for next input */ static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective const flushMode) { const char* const istart = (const char*)input->src; const char* const iend = istart + input->size; const char* ip = istart + input->pos; char* const ostart = (char*)output->dst; char* const oend = ostart + output->size; char* op = ostart + output->pos; U32 someMoreWork = 1; /* check expectations */ DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (unsigned)flushMode); assert(zcs->inBuff != NULL); assert(zcs->inBuffSize > 0); assert(zcs->outBuff != NULL); assert(zcs->outBuffSize > 0); assert(output->pos <= output->size); assert(input->pos <= input->size); while (someMoreWork) { switch(zcs->streamStage) { case zcss_init: RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!"); case zcss_load: if ( (flushMode == ZSTD_e_end) && ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */ && (zcs->inBuffPos == 0) ) { /* shortcut to compression pass directly into output buffer */ size_t const cSize = ZSTD_compressEnd(zcs, op, oend-op, ip, iend-ip); DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize); FORWARD_IF_ERROR(cSize); ip = iend; op += cSize; zcs->frameEnded = 1; ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); someMoreWork = 0; break; } /* complete loading into inBuffer */ { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos; size_t const loaded = ZSTD_limitCopy( zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend-ip); zcs->inBuffPos += loaded; ip += loaded; if ( (flushMode == ZSTD_e_continue) && (zcs->inBuffPos < zcs->inBuffTarget) ) { /* not enough input to fill full block : stop here */ someMoreWork = 0; break; } if ( (flushMode == ZSTD_e_flush) && (zcs->inBuffPos == zcs->inToCompress) ) { /* empty */ someMoreWork = 0; break; } } /* compress current block (note : this stage cannot be stopped in the middle) */ DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode); { void* cDst; size_t cSize; size_t const iSize = zcs->inBuffPos - zcs->inToCompress; size_t oSize = oend-op; unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend); if (oSize >= ZSTD_compressBound(iSize)) cDst = op; /* compress into output buffer, to skip flush stage */ else cDst = zcs->outBuff, oSize = zcs->outBuffSize; cSize = lastBlock ? ZSTD_compressEnd(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize) : ZSTD_compressContinue(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize); FORWARD_IF_ERROR(cSize); zcs->frameEnded = lastBlock; /* prepare next block */ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize; if (zcs->inBuffTarget > zcs->inBuffSize) zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u", (unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize); if (!lastBlock) assert(zcs->inBuffTarget <= zcs->inBuffSize); zcs->inToCompress = zcs->inBuffPos; if (cDst == op) { /* no need to flush */ op += cSize; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed directly in outBuffer"); someMoreWork = 0; ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); } break; } zcs->outBuffContentSize = cSize; zcs->outBuffFlushedSize = 0; zcs->streamStage = zcss_flush; /* pass-through to flush stage */ } /* fall-through */ case zcss_flush: DEBUGLOG(5, "flush stage"); { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize; size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush); DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u", (unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed); op += flushed; zcs->outBuffFlushedSize += flushed; if (toFlush!=flushed) { /* flush not fully completed, presumably because dst is too small */ assert(op==oend); someMoreWork = 0; break; } zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed on flush"); someMoreWork = 0; ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); break; } zcs->streamStage = zcss_load; break; } default: /* impossible */ assert(0); } } input->pos = ip - istart; output->pos = op - ostart; if (zcs->frameEnded) return 0; return ZSTD_nextInputSizeHint(zcs); } static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers >= 1) { assert(cctx->mtctx != NULL); return ZSTDMT_nextInputSizeHint(cctx->mtctx); } #endif return ZSTD_nextInputSizeHint(cctx); } size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) ); return ZSTD_nextInputSizeHint_MTorST(zcs); } size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective endOp) { DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp); /* check conditions */ RETURN_ERROR_IF(output->pos > output->size, GENERIC); RETURN_ERROR_IF(input->pos > input->size, GENERIC); assert(cctx!=NULL); /* transparent initialization stage */ if (cctx->streamStage == zcss_init) { ZSTD_CCtx_params params = cctx->requestedParams; ZSTD_prefixDict const prefixDict = cctx->prefixDict; FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) ); /* Init the local dict if present. */ memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */ assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */ DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage"); if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = input->size + 1; /* auto-fix pledgedSrcSize */ params.cParams = ZSTD_getCParamsFromCCtxParams( &cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/); #ifdef ZSTD_MULTITHREAD if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) { params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */ } if (params.nbWorkers > 0) { /* mt context creation */ if (cctx->mtctx == NULL) { DEBUGLOG(4, "ZSTD_compressStream2: creating new mtctx for nbWorkers=%u", params.nbWorkers); cctx->mtctx = ZSTDMT_createCCtx_advanced(params.nbWorkers, cctx->customMem); RETURN_ERROR_IF(cctx->mtctx == NULL, memory_allocation); } /* mt compression */ DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers); FORWARD_IF_ERROR( ZSTDMT_initCStream_internal( cctx->mtctx, prefixDict.dict, prefixDict.dictSize, ZSTD_dct_rawContent, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); cctx->streamStage = zcss_load; cctx->appliedParams.nbWorkers = params.nbWorkers; } else #endif { FORWARD_IF_ERROR( ZSTD_resetCStream_internal(cctx, prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); assert(cctx->streamStage == zcss_load); assert(cctx->appliedParams.nbWorkers == 0); } } /* end of transparent initialization stage */ /* compression stage */ #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers > 0) { int const forceMaxProgress = (endOp == ZSTD_e_flush || endOp == ZSTD_e_end); size_t flushMin; assert(forceMaxProgress || endOp == ZSTD_e_continue /* Protection for a new flush type */); if (cctx->cParamsChanged) { ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams); cctx->cParamsChanged = 0; } do { flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp); if ( ZSTD_isError(flushMin) || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */ ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); } FORWARD_IF_ERROR(flushMin); } while (forceMaxProgress && flushMin != 0 && output->pos < output->size); DEBUGLOG(5, "completed ZSTD_compressStream2 delegating to ZSTDMT_compressStream_generic"); /* Either we don't require maximum forward progress, we've finished the * flush, or we are out of output space. */ assert(!forceMaxProgress || flushMin == 0 || output->pos == output->size); return flushMin; } #endif FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) ); DEBUGLOG(5, "completed ZSTD_compressStream2"); return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */ } size_t ZSTD_compressStream2_simpleArgs ( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, size_t* dstPos, const void* src, size_t srcSize, size_t* srcPos, ZSTD_EndDirective endOp) { ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; ZSTD_inBuffer input = { src, srcSize, *srcPos }; /* ZSTD_compressStream2() will check validity of dstPos and srcPos */ size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp); *dstPos = output.pos; *srcPos = input.pos; return cErr; } size_t ZSTD_compress2(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); { size_t oPos = 0; size_t iPos = 0; size_t const result = ZSTD_compressStream2_simpleArgs(cctx, dst, dstCapacity, &oPos, src, srcSize, &iPos, ZSTD_e_end); FORWARD_IF_ERROR(result); if (result != 0) { /* compression not completed, due to lack of output space */ assert(oPos == dstCapacity); RETURN_ERROR(dstSize_tooSmall); } assert(iPos == srcSize); /* all input is expected consumed */ return oPos; } } /*====== Finalize ======*/ /*! ZSTD_flushStream() : * @return : amount of data remaining to flush */ size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = { NULL, 0, 0 }; return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush); } size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = { NULL, 0, 0 }; size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end); FORWARD_IF_ERROR( remainingToFlush ); if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */ /* single thread mode : attempt to calculate remaining to flush more precisely */ { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE; size_t const checksumSize = zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4; size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize; DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush); return toFlush; } } /*-===== Pre-defined compression levels =====-*/ #define ZSTD_MAX_CLEVEL 22 int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; } int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; } static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = { { /* "default" - for any srcSize > 256 KB */ /* W, C, H, S, L, TL, strat */ { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */ { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */ { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */ { 21, 16, 17, 1, 5, 1, ZSTD_dfast }, /* level 3 */ { 21, 18, 18, 1, 5, 1, ZSTD_dfast }, /* level 4 */ { 21, 18, 19, 2, 5, 2, ZSTD_greedy }, /* level 5 */ { 21, 19, 19, 3, 5, 4, ZSTD_greedy }, /* level 6 */ { 21, 19, 19, 3, 5, 8, ZSTD_lazy }, /* level 7 */ { 21, 19, 19, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */ { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */ { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */ { 22, 21, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */ { 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 13 */ { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */ { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */ { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */ { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */ { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */ { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */ { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */ { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */ { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */ }, { /* for srcSize <= 256 KB */ /* W, C, H, S, L, T, strat */ { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */ { 18, 14, 14, 1, 5, 1, ZSTD_dfast }, /* level 2 */ { 18, 16, 16, 1, 4, 1, ZSTD_dfast }, /* level 3 */ { 18, 16, 17, 2, 5, 2, ZSTD_greedy }, /* level 4.*/ { 18, 18, 18, 3, 5, 2, ZSTD_greedy }, /* level 5.*/ { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/ { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */ { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/ { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/ { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */ { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/ { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/ { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/ { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/ { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/ { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/ { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/ { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/ { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/ }, { /* for srcSize <= 128 KB */ /* W, C, H, S, L, T, strat */ { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */ { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */ { 17, 15, 16, 2, 5, 1, ZSTD_dfast }, /* level 3 */ { 17, 17, 17, 2, 4, 1, ZSTD_dfast }, /* level 4 */ { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */ { 17, 17, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */ { 17, 17, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */ { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */ { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */ { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/ { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/ { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/ { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/ { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/ { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/ { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/ { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/ { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/ { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/ }, { /* for srcSize <= 16 KB */ /* W, C, H, S, L, T, strat */ { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */ { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */ { 14, 14, 15, 2, 4, 1, ZSTD_dfast }, /* level 3 */ { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */ { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/ { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */ { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */ { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/ { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/ { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/ { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/ { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/ { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/ { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/ { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/ { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/ { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/ { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/ { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/ { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/ { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/ { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/ }, }; /*! ZSTD_getCParams() : * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize. * Size values are optional, provide 0 if not known or unused */ ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { size_t const addedSize = srcSizeHint ? 0 : 500; U64 const rSize = srcSizeHint+dictSize ? srcSizeHint+dictSize+addedSize : ZSTD_CONTENTSIZE_UNKNOWN; /* intentional overflow for srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN */ U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); int row = compressionLevel; DEBUGLOG(5, "ZSTD_getCParams (cLevel=%i)", compressionLevel); if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */ if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */ if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL; { ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row]; if (compressionLevel < 0) cp.targetLength = (unsigned)(-compressionLevel); /* acceleration factor */ return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); /* refine parameters based on srcSize & dictSize */ } } /*! ZSTD_getParams() : * same idea as ZSTD_getCParams() * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`). * Fields of `ZSTD_frameParameters` are set to default values */ ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { ZSTD_parameters params; ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize); DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel); memset(¶ms, 0, sizeof(params)); params.cParams = cParams; params.fParams.contentSizeFlag = 1; return params; }