/* * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /*-************************************* * Tuning parameters ***************************************/ #ifndef ZSTD_CLEVEL_DEFAULT # define ZSTD_CLEVEL_DEFAULT 3 #endif /*-************************************* * Dependencies ***************************************/ #include <string.h> /* memset */ #include "mem.h" #define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */ #include "fse.h" #define HUF_STATIC_LINKING_ONLY #include "huf.h" #include "zstd_compress_internal.h" #include "zstd_fast.h" #include "zstd_double_fast.h" #include "zstd_lazy.h" #include "zstd_opt.h" #include "zstd_ldm.h" /*-************************************* * Helper functions ***************************************/ size_t ZSTD_compressBound(size_t srcSize) { return ZSTD_COMPRESSBOUND(srcSize); } /*-************************************* * Context memory management ***************************************/ struct ZSTD_CDict_s { void* dictBuffer; const void* dictContent; size_t dictContentSize; ZSTD_CCtx* refContext; }; /* typedef'd to ZSTD_CDict within "zstd.h" */ ZSTD_CCtx* ZSTD_createCCtx(void) { return ZSTD_createCCtx_advanced(ZSTD_defaultCMem); } ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem) { ZSTD_CCtx* cctx; if (!customMem.customAlloc ^ !customMem.customFree) return NULL; cctx = (ZSTD_CCtx*) ZSTD_calloc(sizeof(ZSTD_CCtx), customMem); if (!cctx) return NULL; cctx->customMem = customMem; cctx->requestedParams.compressionLevel = ZSTD_CLEVEL_DEFAULT; cctx->requestedParams.fParams.contentSizeFlag = 1; ZSTD_STATIC_ASSERT(zcss_init==0); ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1)); return cctx; } ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize) { ZSTD_CCtx* const cctx = (ZSTD_CCtx*) workspace; if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */ if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */ memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */ cctx->staticSize = workspaceSize; cctx->workSpace = (void*)(cctx+1); cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx); /* entropy space (never moves) */ if (cctx->workSpaceSize < sizeof(ZSTD_entropyCTables_t)) return NULL; assert(((size_t)cctx->workSpace & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ cctx->entropy = (ZSTD_entropyCTables_t*)cctx->workSpace; return cctx; } size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support free on NULL */ if (cctx->staticSize) return ERROR(memory_allocation); /* not compatible with static CCtx */ ZSTD_free(cctx->workSpace, cctx->customMem); cctx->workSpace = NULL; ZSTD_freeCDict(cctx->cdictLocal); cctx->cdictLocal = NULL; #ifdef ZSTD_MULTITHREAD ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL; #endif ZSTD_free(cctx, cctx->customMem); return 0; /* reserved as a potential error code in the future */ } static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD return ZSTDMT_sizeof_CCtx(cctx->mtctx); #else (void) cctx; return 0; #endif } size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support sizeof on NULL */ DEBUGLOG(3, "sizeof(*cctx) : %u", (U32)sizeof(*cctx)); DEBUGLOG(3, "workSpaceSize (including streaming buffers): %u", (U32)cctx->workSpaceSize); DEBUGLOG(3, "inner cdict : %u", (U32)ZSTD_sizeof_CDict(cctx->cdictLocal)); DEBUGLOG(3, "inner MTCTX : %u", (U32)ZSTD_sizeof_mtctx(cctx)); return sizeof(*cctx) + cctx->workSpaceSize + ZSTD_sizeof_CDict(cctx->cdictLocal) + ZSTD_sizeof_mtctx(cctx); } size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs) { return ZSTD_sizeof_CCtx(zcs); /* same object */ } /* private API call, for dictBuilder only */ const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); } #define ZSTD_CLEVEL_CUSTOM 999 static ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( ZSTD_CCtx_params CCtxParams, U64 srcSizeHint, size_t dictSize) { DEBUGLOG(4, "ZSTD_getCParamsFromCCtxParams: srcSize = %u, dictSize = %u", (U32)srcSizeHint, (U32)dictSize); return (CCtxParams.compressionLevel == ZSTD_CLEVEL_CUSTOM) ? CCtxParams.cParams : ZSTD_getCParams(CCtxParams.compressionLevel, srcSizeHint, dictSize); } static void ZSTD_cLevelToCCtxParams_srcSize(ZSTD_CCtx_params* CCtxParams, U64 srcSize) { DEBUGLOG(4, "ZSTD_cLevelToCCtxParams_srcSize: srcSize = %u", (U32)srcSize); CCtxParams->cParams = ZSTD_getCParamsFromCCtxParams(*CCtxParams, srcSize, 0); CCtxParams->compressionLevel = ZSTD_CLEVEL_CUSTOM; } static void ZSTD_cLevelToCParams(ZSTD_CCtx* cctx) { DEBUGLOG(4, "ZSTD_cLevelToCParams: level=%i", cctx->requestedParams.compressionLevel); ZSTD_cLevelToCCtxParams_srcSize( &cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1); } static void ZSTD_cLevelToCCtxParams(ZSTD_CCtx_params* CCtxParams) { DEBUGLOG(4, "ZSTD_cLevelToCCtxParams"); ZSTD_cLevelToCCtxParams_srcSize(CCtxParams, ZSTD_CONTENTSIZE_UNKNOWN); } static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams( ZSTD_compressionParameters cParams) { ZSTD_CCtx_params cctxParams; memset(&cctxParams, 0, sizeof(cctxParams)); cctxParams.cParams = cParams; cctxParams.compressionLevel = ZSTD_CLEVEL_CUSTOM; return cctxParams; } static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced( ZSTD_customMem customMem) { ZSTD_CCtx_params* params; if (!customMem.customAlloc ^ !customMem.customFree) return NULL; params = (ZSTD_CCtx_params*)ZSTD_calloc( sizeof(ZSTD_CCtx_params), customMem); if (!params) { return NULL; } params->customMem = customMem; params->compressionLevel = ZSTD_CLEVEL_DEFAULT; return params; } ZSTD_CCtx_params* ZSTD_createCCtxParams(void) { return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem); } size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params) { if (params == NULL) { return 0; } ZSTD_free(params, params->customMem); return 0; } size_t ZSTD_resetCCtxParams(ZSTD_CCtx_params* params) { return ZSTD_initCCtxParams(params, ZSTD_CLEVEL_DEFAULT); } size_t ZSTD_initCCtxParams(ZSTD_CCtx_params* cctxParams, int compressionLevel) { if (!cctxParams) { return ERROR(GENERIC); } memset(cctxParams, 0, sizeof(*cctxParams)); cctxParams->compressionLevel = compressionLevel; return 0; } size_t ZSTD_initCCtxParams_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params) { if (!cctxParams) { return ERROR(GENERIC); } CHECK_F( ZSTD_checkCParams(params.cParams) ); memset(cctxParams, 0, sizeof(*cctxParams)); cctxParams->cParams = params.cParams; cctxParams->fParams = params.fParams; cctxParams->compressionLevel = ZSTD_CLEVEL_CUSTOM; return 0; } static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams( ZSTD_CCtx_params cctxParams, ZSTD_parameters params) { ZSTD_CCtx_params ret = cctxParams; ret.cParams = params.cParams; ret.fParams = params.fParams; ret.compressionLevel = ZSTD_CLEVEL_CUSTOM; return ret; } #define CLAMPCHECK(val,min,max) { \ if (((val)<(min)) | ((val)>(max))) { \ return ERROR(parameter_outOfBound); \ } } size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, unsigned value) { DEBUGLOG(4, "ZSTD_CCtx_setParameter (%u, %u)", (U32)param, value); if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); switch(param) { case ZSTD_p_format : return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_compressionLevel: if (cctx->cdict) return ERROR(stage_wrong); return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_windowLog: case ZSTD_p_hashLog: case ZSTD_p_chainLog: case ZSTD_p_searchLog: case ZSTD_p_minMatch: case ZSTD_p_targetLength: case ZSTD_p_compressionStrategy: if (cctx->cdict) return ERROR(stage_wrong); if (value>0) ZSTD_cLevelToCParams(cctx); /* Can optimize if srcSize is known */ return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_contentSizeFlag: case ZSTD_p_checksumFlag: case ZSTD_p_dictIDFlag: return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_forceMaxWindow : /* Force back-references to remain < windowSize, * even when referencing into Dictionary content. * default : 0 when using a CDict, 1 when using a Prefix */ return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_nbThreads: if ((value > 1) && cctx->staticSize) { return ERROR(parameter_unsupported); /* MT not compatible with static alloc */ } return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_jobSize: return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_overlapSizeLog: return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_enableLongDistanceMatching: if (cctx->cdict) return ERROR(stage_wrong); if (value>0) ZSTD_cLevelToCParams(cctx); return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); case ZSTD_p_ldmHashLog: case ZSTD_p_ldmMinMatch: case ZSTD_p_ldmBucketSizeLog: case ZSTD_p_ldmHashEveryLog: if (cctx->cdict) return ERROR(stage_wrong); return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value); default: return ERROR(parameter_unsupported); } } size_t ZSTD_CCtxParam_setParameter( ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, unsigned value) { DEBUGLOG(4, "ZSTD_CCtxParam_setParameter (%u, %u)", (U32)param, value); switch(param) { case ZSTD_p_format : if (value > (unsigned)ZSTD_f_zstd1_magicless) return ERROR(parameter_unsupported); CCtxParams->format = (ZSTD_format_e)value; return (size_t)CCtxParams->format; case ZSTD_p_compressionLevel : if ((int)value > ZSTD_maxCLevel()) value = ZSTD_maxCLevel(); if (value) /* 0 : does not change current level */ CCtxParams->compressionLevel = value; return CCtxParams->compressionLevel; case ZSTD_p_windowLog : DEBUGLOG(4, "ZSTD_CCtxParam_setParameter: set windowLog=%u", value); if (value) { /* 0 : does not change current windowLog */ CLAMPCHECK(value, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.windowLog = value; } return CCtxParams->cParams.windowLog; case ZSTD_p_hashLog : if (value) { /* 0 : does not change current hashLog */ CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.hashLog = value; } return CCtxParams->cParams.hashLog; case ZSTD_p_chainLog : if (value) { /* 0 : does not change current chainLog */ CLAMPCHECK(value, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.chainLog = value; } return CCtxParams->cParams.chainLog; case ZSTD_p_searchLog : if (value) { /* 0 : does not change current searchLog */ CLAMPCHECK(value, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.searchLog = value; } return value; case ZSTD_p_minMatch : if (value) { /* 0 : does not change current minMatch length */ CLAMPCHECK(value, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.searchLength = value; } return CCtxParams->cParams.searchLength; case ZSTD_p_targetLength : if (value) { /* 0 : does not change current sufficient_len */ CLAMPCHECK(value, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.targetLength = value; } return CCtxParams->cParams.targetLength; case ZSTD_p_compressionStrategy : if (value) { /* 0 : does not change currentstrategy */ CLAMPCHECK(value, (unsigned)ZSTD_fast, (unsigned)ZSTD_btultra); ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.strategy = (ZSTD_strategy)value; } return (size_t)CCtxParams->cParams.strategy; case ZSTD_p_contentSizeFlag : /* Content size written in frame header _when known_ (default:1) */ DEBUGLOG(4, "set content size flag = %u", (value>0)); CCtxParams->fParams.contentSizeFlag = value > 0; return CCtxParams->fParams.contentSizeFlag; case ZSTD_p_checksumFlag : /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */ CCtxParams->fParams.checksumFlag = value > 0; return CCtxParams->fParams.checksumFlag; case ZSTD_p_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */ DEBUGLOG(4, "set dictIDFlag = %u", (value>0)); CCtxParams->fParams.noDictIDFlag = (value == 0); return !CCtxParams->fParams.noDictIDFlag; case ZSTD_p_forceMaxWindow : CCtxParams->forceWindow = (value > 0); return CCtxParams->forceWindow; case ZSTD_p_nbThreads : if (value == 0) return CCtxParams->nbThreads; #ifndef ZSTD_MULTITHREAD if (value > 1) return ERROR(parameter_unsupported); return 1; #else return ZSTDMT_CCtxParam_setNbThreads(CCtxParams, value); #endif case ZSTD_p_jobSize : #ifndef ZSTD_MULTITHREAD return ERROR(parameter_unsupported); #else if (CCtxParams->nbThreads <= 1) return ERROR(parameter_unsupported); return ZSTDMT_CCtxParam_setMTCtxParameter(CCtxParams, ZSTDMT_p_jobSize, value); #endif case ZSTD_p_overlapSizeLog : #ifndef ZSTD_MULTITHREAD return ERROR(parameter_unsupported); #else if (CCtxParams->nbThreads <= 1) return ERROR(parameter_unsupported); return ZSTDMT_CCtxParam_setMTCtxParameter(CCtxParams, ZSTDMT_p_overlapSectionLog, value); #endif case ZSTD_p_enableLongDistanceMatching : if (value) { ZSTD_cLevelToCCtxParams(CCtxParams); CCtxParams->cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG; } return ZSTD_ldm_initializeParameters(&CCtxParams->ldmParams, value); case ZSTD_p_ldmHashLog : if (value) { /* 0 : does not change current ldmHashLog */ CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); CCtxParams->ldmParams.hashLog = value; } return CCtxParams->ldmParams.hashLog; case ZSTD_p_ldmMinMatch : if (value) { /* 0 : does not change current ldmMinMatch */ CLAMPCHECK(value, ZSTD_LDM_MINMATCH_MIN, ZSTD_LDM_MINMATCH_MAX); CCtxParams->ldmParams.minMatchLength = value; } return CCtxParams->ldmParams.minMatchLength; case ZSTD_p_ldmBucketSizeLog : if (value > ZSTD_LDM_BUCKETSIZELOG_MAX) { return ERROR(parameter_outOfBound); } CCtxParams->ldmParams.bucketSizeLog = value; return value; case ZSTD_p_ldmHashEveryLog : if (value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN) { return ERROR(parameter_outOfBound); } CCtxParams->ldmParams.hashEveryLog = value; return value; default: return ERROR(parameter_unsupported); } } /** ZSTD_CCtx_setParametersUsingCCtxParams() : * just applies `params` into `cctx` * no action is performed, parameters are merely stored. */ size_t ZSTD_CCtx_setParametersUsingCCtxParams( ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); if (cctx->cdict) return ERROR(stage_wrong); cctx->requestedParams = *params; return 0; } ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize); if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; return 0; } size_t ZSTD_CCtx_loadDictionary_advanced( ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); if (cctx->staticSize) return ERROR(memory_allocation); /* no malloc for static CCtx */ DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize); ZSTD_freeCDict(cctx->cdictLocal); /* in case one already exists */ if (dict==NULL || dictSize==0) { /* no dictionary mode */ cctx->cdictLocal = NULL; cctx->cdict = NULL; } else { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, dictSize); cctx->cdictLocal = ZSTD_createCDict_advanced( dict, dictSize, dictLoadMethod, dictMode, cParams, cctx->customMem); cctx->cdict = cctx->cdictLocal; if (cctx->cdictLocal == NULL) return ERROR(memory_allocation); } return 0; } ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference( ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { return ZSTD_CCtx_loadDictionary_advanced( cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dm_auto); } ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { return ZSTD_CCtx_loadDictionary_advanced( cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dm_auto); } size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); cctx->cdict = cdict; memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* exclusive */ return 0; } size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize) { return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dm_rawContent); } size_t ZSTD_CCtx_refPrefix_advanced( ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictMode_e dictMode) { if (cctx->streamStage != zcss_init) return ERROR(stage_wrong); cctx->cdict = NULL; /* prefix discards any prior cdict */ cctx->prefixDict.dict = prefix; cctx->prefixDict.dictSize = prefixSize; cctx->prefixDict.dictMode = dictMode; return 0; } static void ZSTD_startNewCompression(ZSTD_CCtx* cctx) { cctx->streamStage = zcss_init; cctx->pledgedSrcSizePlusOne = 0; } /*! ZSTD_CCtx_reset() : * Also dumps dictionary */ void ZSTD_CCtx_reset(ZSTD_CCtx* cctx) { ZSTD_startNewCompression(cctx); cctx->cdict = NULL; } /** ZSTD_checkCParams() : control CParam values remain within authorized range. @return : 0, or an error code if one value is beyond authorized range */ size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams) { CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX); CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX); CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX); CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX); CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX); if ((U32)(cParams.strategy) > (U32)ZSTD_btultra) return ERROR(parameter_unsupported); return 0; } /** ZSTD_clampCParams() : * make CParam values within valid range. * @return : valid CParams */ static ZSTD_compressionParameters ZSTD_clampCParams(ZSTD_compressionParameters cParams) { # define CLAMP(val,min,max) { \ if (val<min) val=min; \ else if (val>max) val=max; \ } CLAMP(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX); CLAMP(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX); CLAMP(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX); CLAMP(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX); CLAMP(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX); CLAMP(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX); if ((U32)(cParams.strategy) > (U32)ZSTD_btultra) cParams.strategy = ZSTD_btultra; return cParams; } /** ZSTD_cycleLog() : * condition for correct operation : hashLog > 1 */ static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) { U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); return hashLog - btScale; } /** ZSTD_adjustCParams_internal() : optimize `cPar` for a given input (`srcSize` and `dictSize`). mostly downsizing to reduce memory consumption and initialization latency. Both `srcSize` and `dictSize` are optional (use 0 if unknown). Note : cPar is considered validated at this stage. Use ZSTD_checkCParams() to ensure that condition. */ ZSTD_compressionParameters ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { static const U64 minSrcSize = 513; /* (1<<9) + 1 */ static const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1); assert(ZSTD_checkCParams(cPar)==0); if (dictSize && (srcSize+1<2) /* srcSize unknown */ ) srcSize = minSrcSize; /* presumed small when there is a dictionary */ else if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* 0 == unknown : presumed large */ /* resize windowLog if input is small enough, to use less memory */ if ( (srcSize < maxWindowResize) && (dictSize < maxWindowResize) ) { U32 const tSize = (U32)(srcSize + dictSize); static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN; U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN : ZSTD_highbit32(tSize-1) + 1; if (cPar.windowLog > srcLog) cPar.windowLog = srcLog; } if (cPar.hashLog > cPar.windowLog) cPar.hashLog = cPar.windowLog; { U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy); if (cycleLog > cPar.windowLog) cPar.chainLog -= (cycleLog - cPar.windowLog); } if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */ return cPar; } ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { cPar = ZSTD_clampCParams(cPar); return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize); } size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params) { /* Estimate CCtx size is supported for single-threaded compression only. */ if (params->nbThreads > 1) { return ERROR(GENERIC); } { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(*params, 0, 0); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog); U32 const divider = (cParams.searchLength==3) ? 3 : 4; size_t const maxNbSeq = blockSize / divider; size_t const tokenSpace = blockSize + 11*maxNbSeq; size_t const chainSize = (cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams.chainLog); size_t const hSize = ((size_t)1) << cParams.hashLog; U32 const hashLog3 = (cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog); size_t const h3Size = ((size_t)1) << hashLog3; size_t const entropySpace = sizeof(ZSTD_entropyCTables_t); size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); size_t const optBudget = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits))*sizeof(U32) + (ZSTD_OPT_NUM+1)*(sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t)); size_t const optSpace = ((cParams.strategy == ZSTD_btopt) || (cParams.strategy == ZSTD_btultra)) ? optBudget : 0; size_t const ldmSpace = params->ldmParams.enableLdm ? ZSTD_ldm_getTableSize(params->ldmParams.hashLog, params->ldmParams.bucketSizeLog) : 0; size_t const neededSpace = entropySpace + tableSpace + tokenSpace + optSpace + ldmSpace; DEBUGLOG(5, "sizeof(ZSTD_CCtx) : %u", (U32)sizeof(ZSTD_CCtx)); DEBUGLOG(5, "estimate workSpace : %u", (U32)neededSpace); return sizeof(ZSTD_CCtx) + neededSpace; } } size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams) { ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams); return ZSTD_estimateCCtxSize_usingCCtxParams(¶ms); } size_t ZSTD_estimateCCtxSize(int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0); return ZSTD_estimateCCtxSize_usingCParams(cParams); } size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params) { if (params->nbThreads > 1) { return ERROR(GENERIC); } { size_t const CCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(params); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << params->cParams.windowLog); size_t const inBuffSize = ((size_t)1 << params->cParams.windowLog) + blockSize; size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1; size_t const streamingSize = inBuffSize + outBuffSize; return CCtxSize + streamingSize; } } size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams) { ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams); return ZSTD_estimateCStreamSize_usingCCtxParams(¶ms); } size_t ZSTD_estimateCStreamSize(int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0); return ZSTD_estimateCStreamSize_usingCParams(cParams); } static U32 ZSTD_equivalentCParams(ZSTD_compressionParameters cParams1, ZSTD_compressionParameters cParams2) { return (cParams1.hashLog == cParams2.hashLog) & (cParams1.chainLog == cParams2.chainLog) & (cParams1.strategy == cParams2.strategy) /* opt parser space */ & ((cParams1.searchLength==3) == (cParams2.searchLength==3)); /* hashlog3 space */ } /** The parameters are equivalent if ldm is not enabled in both sets or * all the parameters are equivalent. */ static U32 ZSTD_equivalentLdmParams(ldmParams_t ldmParams1, ldmParams_t ldmParams2) { return (!ldmParams1.enableLdm && !ldmParams2.enableLdm) || (ldmParams1.enableLdm == ldmParams2.enableLdm && ldmParams1.hashLog == ldmParams2.hashLog && ldmParams1.bucketSizeLog == ldmParams2.bucketSizeLog && ldmParams1.minMatchLength == ldmParams2.minMatchLength && ldmParams1.hashEveryLog == ldmParams2.hashEveryLog); } typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e; /* ZSTD_sufficientBuff() : * check internal buffers exist for streaming if buffPol == ZSTDb_buffered . * Note : they are assumed to be correctly sized if ZSTD_equivalentCParams()==1 */ static U32 ZSTD_sufficientBuff(size_t bufferSize1, size_t blockSize1, ZSTD_buffered_policy_e buffPol2, ZSTD_compressionParameters cParams2, U64 pledgedSrcSize) { size_t const windowSize2 = MAX(1, (size_t)MIN(((U64)1 << cParams2.windowLog), pledgedSrcSize)); size_t const blockSize2 = MIN(ZSTD_BLOCKSIZE_MAX, windowSize2); size_t const neededBufferSize2 = (buffPol2==ZSTDb_buffered) ? windowSize2 + blockSize2 : 0; DEBUGLOG(4, "ZSTD_sufficientBuff: windowSize2=%u from wlog=%u", (U32)windowSize2, cParams2.windowLog); DEBUGLOG(4, "ZSTD_sufficientBuff: blockSize2 %u <=? blockSize1 %u", (U32)blockSize2, (U32)blockSize1); return (blockSize2 <= blockSize1) /* seqStore space depends on blockSize */ & (neededBufferSize2 <= bufferSize1); } /** Equivalence for resetCCtx purposes */ static U32 ZSTD_equivalentParams(ZSTD_CCtx_params params1, ZSTD_CCtx_params params2, size_t buffSize1, size_t blockSize1, ZSTD_buffered_policy_e buffPol2, U64 pledgedSrcSize) { DEBUGLOG(4, "ZSTD_equivalentParams: pledgedSrcSize=%u", (U32)pledgedSrcSize); return ZSTD_equivalentCParams(params1.cParams, params2.cParams) && ZSTD_equivalentLdmParams(params1.ldmParams, params2.ldmParams) && ZSTD_sufficientBuff(buffSize1, blockSize1, buffPol2, params2.cParams, pledgedSrcSize); } /*! ZSTD_continueCCtx() : * reuse CCtx without reset (note : requires no dictionary) */ static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_CCtx_params params, U64 pledgedSrcSize) { U32 const end = (U32)(cctx->nextSrc - cctx->base); size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize)); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize); DEBUGLOG(4, "ZSTD_continueCCtx"); cctx->blockSize = blockSize; /* previous block size could be different even for same windowLog, due to pledgedSrcSize */ cctx->appliedParams = params; cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; cctx->consumedSrcSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) cctx->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(4, "pledged content size : %u ; flag : %u", (U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag); cctx->lowLimit = end; cctx->dictLimit = end; cctx->nextToUpdate = end+1; cctx->stage = ZSTDcs_init; cctx->dictID = 0; cctx->loadedDictEnd = 0; { int i; for (i=0; i<ZSTD_REP_NUM; i++) cctx->seqStore.rep[i] = repStartValue[i]; } cctx->optState.litLengthSum = 0; /* force reset of btopt stats */ XXH64_reset(&cctx->xxhState, 0); return 0; } typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e; /*! ZSTD_resetCCtx_internal() : note : `params` are assumed fully validated at this stage */ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_compResetPolicy_e const crp, ZSTD_buffered_policy_e const zbuff) { DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u", (U32)pledgedSrcSize, params.cParams.windowLog); assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); if (crp == ZSTDcrp_continue) { if (ZSTD_equivalentParams(zc->appliedParams, params, zc->inBuffSize, zc->blockSize, zbuff, pledgedSrcSize)) { DEBUGLOG(4, "ZSTD_equivalentParams()==1 -> continue mode (wLog1=%u, blockSize1=%u)", zc->appliedParams.cParams.windowLog, (U32)zc->blockSize); assert(!(params.ldmParams.enableLdm && params.ldmParams.hashEveryLog == ZSTD_LDM_HASHEVERYLOG_NOTSET)); zc->entropy->hufCTable_repeatMode = HUF_repeat_none; zc->entropy->offcode_repeatMode = FSE_repeat_none; zc->entropy->matchlength_repeatMode = FSE_repeat_none; zc->entropy->litlength_repeatMode = FSE_repeat_none; return ZSTD_continueCCtx(zc, params, pledgedSrcSize); } } DEBUGLOG(4, "ZSTD_equivalentParams()==0 -> reset CCtx"); if (params.ldmParams.enableLdm) { /* Adjust long distance matching parameters */ ZSTD_ldm_adjustParameters(¶ms.ldmParams, params.cParams.windowLog); assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); assert(params.ldmParams.hashEveryLog < 32); zc->ldmState.hashPower = ZSTD_ldm_getHashPower(params.ldmParams.minMatchLength); } { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize)); size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize); U32 const divider = (params.cParams.searchLength==3) ? 3 : 4; size_t const maxNbSeq = blockSize / divider; size_t const tokenSpace = blockSize + 11*maxNbSeq; size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << params.cParams.chainLog); size_t const hSize = ((size_t)1) << params.cParams.hashLog; U32 const hashLog3 = (params.cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog); size_t const h3Size = ((size_t)1) << hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0; size_t const buffInSize = (zbuff==ZSTDb_buffered) ? windowSize + blockSize : 0; void* ptr; /* Check if workSpace is large enough, alloc a new one if needed */ { size_t const entropySpace = sizeof(ZSTD_entropyCTables_t); size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits)) * sizeof(U32) + (ZSTD_OPT_NUM+1) * (sizeof(ZSTD_match_t)+sizeof(ZSTD_optimal_t)); size_t const optSpace = ( (params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btultra)) ? optPotentialSpace : 0; size_t const bufferSpace = buffInSize + buffOutSize; size_t const ldmSpace = params.ldmParams.enableLdm ? ZSTD_ldm_getTableSize(params.ldmParams.hashLog, params.ldmParams.bucketSizeLog) : 0; size_t const neededSpace = entropySpace + optSpace + ldmSpace + tableSpace + tokenSpace + bufferSpace; DEBUGLOG(4, "Need %uKB workspace, including %uKB for tables, and %uKB for buffers", (U32)(neededSpace>>10), (U32)(tableSpace>>10), (U32)(bufferSpace>>10)); DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u - windowSize: %u - blockSize: %u", (U32)chainSize, (U32)hSize, (U32)h3Size, (U32)windowSize, (U32)blockSize); if (zc->workSpaceSize < neededSpace) { /* too small : resize */ DEBUGLOG(4, "Need to update workSpaceSize from %uK to %uK", (unsigned)(zc->workSpaceSize>>10), (unsigned)(neededSpace>>10)); /* static cctx : no resize, error out */ if (zc->staticSize) return ERROR(memory_allocation); zc->workSpaceSize = 0; ZSTD_free(zc->workSpace, zc->customMem); zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem); if (zc->workSpace == NULL) return ERROR(memory_allocation); zc->workSpaceSize = neededSpace; ptr = zc->workSpace; /* entropy space */ assert(((size_t)zc->workSpace & 3) == 0); /* ensure correct alignment */ assert(zc->workSpaceSize >= sizeof(ZSTD_entropyCTables_t)); zc->entropy = (ZSTD_entropyCTables_t*)zc->workSpace; } } /* init params */ zc->appliedParams = params; zc->pledgedSrcSizePlusOne = pledgedSrcSize+1; zc->consumedSrcSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) zc->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(4, "pledged content size : %u ; flag : %u", (U32)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag); zc->blockSize = blockSize; XXH64_reset(&zc->xxhState, 0); zc->stage = ZSTDcs_init; zc->dictID = 0; zc->loadedDictEnd = 0; zc->entropy->hufCTable_repeatMode = HUF_repeat_none; zc->entropy->offcode_repeatMode = FSE_repeat_none; zc->entropy->matchlength_repeatMode = FSE_repeat_none; zc->entropy->litlength_repeatMode = FSE_repeat_none; zc->nextToUpdate = 1; zc->nextSrc = NULL; zc->base = NULL; zc->dictBase = NULL; zc->dictLimit = 0; zc->lowLimit = 0; { int i; for (i=0; i<ZSTD_REP_NUM; i++) zc->seqStore.rep[i] = repStartValue[i]; } zc->hashLog3 = hashLog3; zc->optState.litLengthSum = 0; ptr = zc->entropy + 1; /* opt parser space */ if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btultra)) { DEBUGLOG(4, "reserving optimal parser space"); assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ zc->optState.litFreq = (U32*)ptr; zc->optState.litLengthFreq = zc->optState.litFreq + (1<<Litbits); zc->optState.matchLengthFreq = zc->optState.litLengthFreq + (MaxLL+1); zc->optState.offCodeFreq = zc->optState.matchLengthFreq + (MaxML+1); ptr = zc->optState.offCodeFreq + (MaxOff+1); zc->optState.matchTable = (ZSTD_match_t*)ptr; ptr = zc->optState.matchTable + ZSTD_OPT_NUM+1; zc->optState.priceTable = (ZSTD_optimal_t*)ptr; ptr = zc->optState.priceTable + ZSTD_OPT_NUM+1; } /* ldm hash table */ /* initialize bucketOffsets table later for pointer alignment */ if (params.ldmParams.enableLdm) { size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog; memset(ptr, 0, ldmHSize * sizeof(ldmEntry_t)); assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ zc->ldmState.hashTable = (ldmEntry_t*)ptr; ptr = zc->ldmState.hashTable + ldmHSize; } /* table Space */ DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_noMemset); if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */ assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ zc->hashTable = (U32*)(ptr); zc->chainTable = zc->hashTable + hSize; zc->hashTable3 = zc->chainTable + chainSize; ptr = zc->hashTable3 + h3Size; /* sequences storage */ zc->seqStore.sequencesStart = (seqDef*)ptr; ptr = zc->seqStore.sequencesStart + maxNbSeq; zc->seqStore.llCode = (BYTE*) ptr; zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq; zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq; zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq; ptr = zc->seqStore.litStart + blockSize; /* ldm bucketOffsets table */ if (params.ldmParams.enableLdm) { size_t const ldmBucketSize = ((size_t)1) << (params.ldmParams.hashLog - params.ldmParams.bucketSizeLog); memset(ptr, 0, ldmBucketSize); zc->ldmState.bucketOffsets = (BYTE*)ptr; ptr = zc->ldmState.bucketOffsets + ldmBucketSize; } /* buffers */ zc->inBuffSize = buffInSize; zc->inBuff = (char*)ptr; zc->outBuffSize = buffOutSize; zc->outBuff = zc->inBuff + buffInSize; return 0; } } /* ZSTD_invalidateRepCodes() : * ensures next compression will not use repcodes from previous block. * Note : only works with regular variant; * do not use with extDict variant ! */ void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) { int i; for (i=0; i<ZSTD_REP_NUM; i++) cctx->seqStore.rep[i] = 0; } /*! ZSTD_copyCCtx_internal() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * The "context", in this case, refers to the hash and chain tables, * entropy tables, and dictionary references. * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx. * @return : 0, or an error code */ static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned windowLog, ZSTD_frameParameters fParams, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(5, "ZSTD_copyCCtx_internal"); if (srcCCtx->stage!=ZSTDcs_init) return ERROR(stage_wrong); memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem)); { ZSTD_CCtx_params params = dstCCtx->requestedParams; /* Copy only compression parameters related to tables. */ params.cParams = srcCCtx->appliedParams.cParams; if (windowLog) params.cParams.windowLog = windowLog; params.fParams = fParams; ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize, ZSTDcrp_noMemset, zbuff); } /* copy tables */ { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog); size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog; size_t const h3Size = (size_t)1 << srcCCtx->hashLog3; size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); assert((U32*)dstCCtx->chainTable == (U32*)dstCCtx->hashTable + hSize); /* chainTable must follow hashTable */ assert((U32*)dstCCtx->hashTable3 == (U32*)dstCCtx->chainTable + chainSize); memcpy(dstCCtx->hashTable, srcCCtx->hashTable, tableSpace); /* presumes all tables follow each other */ } /* copy dictionary offsets */ dstCCtx->nextToUpdate = srcCCtx->nextToUpdate; dstCCtx->nextToUpdate3= srcCCtx->nextToUpdate3; dstCCtx->nextSrc = srcCCtx->nextSrc; dstCCtx->base = srcCCtx->base; dstCCtx->dictBase = srcCCtx->dictBase; dstCCtx->dictLimit = srcCCtx->dictLimit; dstCCtx->lowLimit = srcCCtx->lowLimit; dstCCtx->loadedDictEnd= srcCCtx->loadedDictEnd; dstCCtx->dictID = srcCCtx->dictID; /* copy entropy tables */ memcpy(dstCCtx->entropy, srcCCtx->entropy, sizeof(ZSTD_entropyCTables_t)); /* copy repcodes */ { int i; for (i = 0; i < ZSTD_REP_NUM; ++i) dstCCtx->seqStore.rep[i] = srcCCtx->seqStore.rep[i]; } return 0; } /*! ZSTD_copyCCtx() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * pledgedSrcSize==0 means "unknown". * @return : 0, or an error code */ size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize) { ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0); ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1); if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN); return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx, 0 /*windowLog from srcCCtx*/, fParams, pledgedSrcSize, zbuff); } /*! ZSTD_reduceTable() : * reduce table indexes by `reducerValue` */ static void ZSTD_reduceTable (U32* const table, U32 const size, U32 const reducerValue) { U32 u; for (u=0 ; u < size ; u++) { if (table[u] < reducerValue) table[u] = 0; else table[u] -= reducerValue; } } /*! ZSTD_ldm_reduceTable() : * reduce table indexes by `reducerValue` */ static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, U32 const reducerValue) { U32 u; for (u = 0; u < size; u++) { if (table[u].offset < reducerValue) table[u].offset = 0; else table[u].offset -= reducerValue; } } /*! ZSTD_reduceIndex() : * rescale all indexes to avoid future overflow (indexes are U32) */ static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue) { { U32 const hSize = (U32)1 << zc->appliedParams.cParams.hashLog; ZSTD_reduceTable(zc->hashTable, hSize, reducerValue); } { U32 const chainSize = (zc->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((U32)1 << zc->appliedParams.cParams.chainLog); ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue); } { U32 const h3Size = (zc->hashLog3) ? (U32)1 << zc->hashLog3 : 0; ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue); } { if (zc->appliedParams.ldmParams.enableLdm) { U32 const ldmHSize = (U32)1 << zc->appliedParams.ldmParams.hashLog; ZSTD_ldm_reduceTable(zc->ldmState.hashTable, ldmHSize, reducerValue); } } } /*-******************************************************* * Block entropic compression *********************************************************/ /* See doc/zstd_compression_format.md for detailed format description */ size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { if (srcSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall); memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); MEM_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw); return ZSTD_blockHeaderSize+srcSize; } static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE* const)dst; U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); if (srcSize + flSize > dstCapacity) return ERROR(dstSize_tooSmall); switch(flSize) { case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3)); break; case 2: /* 2 - 2 - 12 */ MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4))); break; case 3: /* 2 - 2 - 20 */ MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4))); break; default: /* not necessary : flSize is {1,2,3} */ assert(0); } memcpy(ostart + flSize, src, srcSize); return srcSize + flSize; } static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE* const)dst; U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */ switch(flSize) { case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3)); break; case 2: /* 2 - 2 - 12 */ MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4))); break; case 3: /* 2 - 2 - 20 */ MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4))); break; default: /* not necessary : flSize is {1,2,3} */ assert(0); } ostart[flSize] = *(const BYTE*)src; return flSize+1; } static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; } static size_t ZSTD_compressLiterals (ZSTD_entropyCTables_t * entropy, ZSTD_strategy strategy, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const minGain = ZSTD_minGain(srcSize); size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB); BYTE* const ostart = (BYTE*)dst; U32 singleStream = srcSize < 256; symbolEncodingType_e hType = set_compressed; size_t cLitSize; /* small ? don't even attempt compression (speed opt) */ # define LITERAL_NOENTROPY 63 { size_t const minLitSize = entropy->hufCTable_repeatMode == HUF_repeat_valid ? 6 : LITERAL_NOENTROPY; if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); } if (dstCapacity < lhSize+1) return ERROR(dstSize_tooSmall); /* not enough space for compression */ { HUF_repeat repeat = entropy->hufCTable_repeatMode; int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0; if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1; cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, entropy->workspace, sizeof(entropy->workspace), (HUF_CElt*)entropy->hufCTable, &repeat, preferRepeat) : HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, entropy->workspace, sizeof(entropy->workspace), (HUF_CElt*)entropy->hufCTable, &repeat, preferRepeat); if (repeat != HUF_repeat_none) { hType = set_repeat; } /* reused the existing table */ else { entropy->hufCTable_repeatMode = HUF_repeat_check; } /* now have a table to reuse */ } if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) { entropy->hufCTable_repeatMode = HUF_repeat_none; return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); } if (cLitSize==1) { entropy->hufCTable_repeatMode = HUF_repeat_none; return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize); } /* Build header */ switch(lhSize) { case 3: /* 2 - 2 - 10 - 10 */ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14); MEM_writeLE24(ostart, lhc); break; } case 4: /* 2 - 2 - 14 - 14 */ { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18); MEM_writeLE32(ostart, lhc); break; } case 5: /* 2 - 2 - 18 - 18 */ { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22); MEM_writeLE32(ostart, lhc); ostart[4] = (BYTE)(cLitSize >> 10); break; } default: /* not possible : lhSize is {3,4,5} */ assert(0); } return lhSize+cLitSize; } void ZSTD_seqToCodes(const seqStore_t* seqStorePtr) { const seqDef* const sequences = seqStorePtr->sequencesStart; BYTE* const llCodeTable = seqStorePtr->llCode; BYTE* const ofCodeTable = seqStorePtr->ofCode; BYTE* const mlCodeTable = seqStorePtr->mlCode; U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); U32 u; for (u=0; u<nbSeq; u++) { U32 const llv = sequences[u].litLength; U32 const mlv = sequences[u].matchLength; llCodeTable[u] = (BYTE)ZSTD_LLcode(llv); ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset); mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv); } if (seqStorePtr->longLengthID==1) llCodeTable[seqStorePtr->longLengthPos] = MaxLL; if (seqStorePtr->longLengthID==2) mlCodeTable[seqStorePtr->longLengthPos] = MaxML; } typedef enum { ZSTD_defaultDisallowed = 0, ZSTD_defaultAllowed = 1 } ZSTD_defaultPolicy_e; MEM_STATIC symbolEncodingType_e ZSTD_selectEncodingType( FSE_repeat* repeatMode, size_t const mostFrequent, size_t nbSeq, U32 defaultNormLog, ZSTD_defaultPolicy_e const isDefaultAllowed) { #define MIN_SEQ_FOR_DYNAMIC_FSE 64 #define MAX_SEQ_FOR_STATIC_FSE 1000 ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0); if ((mostFrequent == nbSeq) && (!isDefaultAllowed || nbSeq > 2)) { DEBUGLOG(5, "Selected set_rle"); /* Prefer set_basic over set_rle when there are 2 or less symbols, * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol. * If basic encoding isn't possible, always choose RLE. */ *repeatMode = FSE_repeat_check; return set_rle; } if ( isDefaultAllowed && (*repeatMode == FSE_repeat_valid) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) { DEBUGLOG(5, "Selected set_repeat"); return set_repeat; } if ( isDefaultAllowed && ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (defaultNormLog-1)))) ) { DEBUGLOG(5, "Selected set_basic"); /* The format allows default tables to be repeated, but it isn't useful. * When using simple heuristics to select encoding type, we don't want * to confuse these tables with dictionaries. When running more careful * analysis, we don't need to waste time checking both repeating tables * and default tables. */ *repeatMode = FSE_repeat_none; return set_basic; } DEBUGLOG(5, "Selected set_compressed"); *repeatMode = FSE_repeat_check; return set_compressed; } MEM_STATIC size_t ZSTD_buildCTable(void* dst, size_t dstCapacity, FSE_CTable* CTable, U32 FSELog, symbolEncodingType_e type, U32* count, U32 max, BYTE const* codeTable, size_t nbSeq, S16 const* defaultNorm, U32 defaultNormLog, U32 defaultMax, void* workspace, size_t workspaceSize) { BYTE* op = (BYTE*)dst; BYTE const* const oend = op + dstCapacity; switch (type) { case set_rle: *op = codeTable[0]; CHECK_F(FSE_buildCTable_rle(CTable, (BYTE)max)); return 1; case set_repeat: return 0; case set_basic: CHECK_F(FSE_buildCTable_wksp(CTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */ return 0; case set_compressed: { S16 norm[MaxSeq + 1]; size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); if (count[codeTable[nbSeq-1]] > 1) { count[codeTable[nbSeq-1]]--; nbSeq_1--; } assert(nbSeq_1 > 1); CHECK_F(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max)); { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return NCountSize; CHECK_F(FSE_buildCTable_wksp(CTable, norm, max, tableLog, workspace, workspaceSize)); return NCountSize; } } default: return assert(0), ERROR(GENERIC); } } MEM_STATIC size_t ZSTD_encodeSequences( void* dst, size_t dstCapacity, FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, seqDef const* sequences, size_t nbSeq, int longOffsets) { BIT_CStream_t blockStream; FSE_CState_t stateMatchLength; FSE_CState_t stateOffsetBits; FSE_CState_t stateLitLength; CHECK_E(BIT_initCStream(&blockStream, dst, dstCapacity), dstSize_tooSmall); /* not enough space remaining */ /* first symbols */ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); if (longOffsets) { U32 const ofBits = ofCodeTable[nbSeq-1]; int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); if (extraBits) { BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits); BIT_flushBits(&blockStream); } BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits, ofBits - extraBits); } else { BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); } BIT_flushBits(&blockStream); { size_t n; for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */ BYTE const llCode = llCodeTable[n]; BYTE const ofCode = ofCodeTable[n]; BYTE const mlCode = mlCodeTable[n]; U32 const llBits = LL_bits[llCode]; U32 const ofBits = ofCode; U32 const mlBits = ML_bits[mlCode]; DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u", sequences[n].litLength, sequences[n].matchLength + MINMATCH, sequences[n].offset); /* 32b*/ /* 64b*/ /* (7)*/ /* (7)*/ FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */ FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */ if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/ FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */ if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog))) BIT_flushBits(&blockStream); /* (7)*/ BIT_addBits(&blockStream, sequences[n].litLength, llBits); if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); if (longOffsets) { int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); if (extraBits) { BIT_addBits(&blockStream, sequences[n].offset, extraBits); BIT_flushBits(&blockStream); /* (7)*/ } BIT_addBits(&blockStream, sequences[n].offset >> extraBits, ofBits - extraBits); /* 31 */ } else { BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ } BIT_flushBits(&blockStream); /* (7)*/ } } FSE_flushCState(&blockStream, &stateMatchLength); FSE_flushCState(&blockStream, &stateOffsetBits); FSE_flushCState(&blockStream, &stateLitLength); { size_t const streamSize = BIT_closeCStream(&blockStream); if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */ return streamSize; } } MEM_STATIC size_t ZSTD_compressSequences_internal(seqStore_t* seqStorePtr, ZSTD_entropyCTables_t* entropy, ZSTD_compressionParameters const* cParams, void* dst, size_t dstCapacity) { const int longOffsets = cParams->windowLog > STREAM_ACCUMULATOR_MIN; U32 count[MaxSeq+1]; FSE_CTable* CTable_LitLength = entropy->litlengthCTable; FSE_CTable* CTable_OffsetBits = entropy->offcodeCTable; FSE_CTable* CTable_MatchLength = entropy->matchlengthCTable; U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */ const seqDef* const sequences = seqStorePtr->sequencesStart; const BYTE* const ofCodeTable = seqStorePtr->ofCode; const BYTE* const llCodeTable = seqStorePtr->llCode; const BYTE* const mlCodeTable = seqStorePtr->mlCode; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstCapacity; BYTE* op = ostart; size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart; BYTE* seqHead; ZSTD_STATIC_ASSERT(sizeof(entropy->workspace) >= (1<<MAX(MLFSELog,LLFSELog))); /* Compress literals */ { const BYTE* const literals = seqStorePtr->litStart; size_t const litSize = seqStorePtr->lit - literals; size_t const cSize = ZSTD_compressLiterals( entropy, cParams->strategy, op, dstCapacity, literals, litSize); if (ZSTD_isError(cSize)) return cSize; assert(cSize <= dstCapacity); op += cSize; } /* Sequences Header */ if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/) return ERROR(dstSize_tooSmall); if (nbSeq < 0x7F) *op++ = (BYTE)nbSeq; else if (nbSeq < LONGNBSEQ) op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2; else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3; if (nbSeq==0) return op - ostart; /* seqHead : flags for FSE encoding type */ seqHead = op++; /* convert length/distances into codes */ ZSTD_seqToCodes(seqStorePtr); /* build CTable for Literal Lengths */ { U32 max = MaxLL; size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, entropy->workspace); DEBUGLOG(5, "Building LL table"); LLtype = ZSTD_selectEncodingType(&entropy->litlength_repeatMode, mostFrequent, nbSeq, LL_defaultNormLog, ZSTD_defaultAllowed); { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype, count, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL, entropy->workspace, sizeof(entropy->workspace)); if (ZSTD_isError(countSize)) return countSize; op += countSize; } } /* build CTable for Offsets */ { U32 max = MaxOff; size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, entropy->workspace); /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed; DEBUGLOG(5, "Building OF table"); Offtype = ZSTD_selectEncodingType(&entropy->offcode_repeatMode, mostFrequent, nbSeq, OF_defaultNormLog, defaultPolicy); { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype, count, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, entropy->workspace, sizeof(entropy->workspace)); if (ZSTD_isError(countSize)) return countSize; op += countSize; } } /* build CTable for MatchLengths */ { U32 max = MaxML; size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, entropy->workspace); DEBUGLOG(5, "Building ML table"); MLtype = ZSTD_selectEncodingType(&entropy->matchlength_repeatMode, mostFrequent, nbSeq, ML_defaultNormLog, ZSTD_defaultAllowed); { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype, count, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML, entropy->workspace, sizeof(entropy->workspace)); if (ZSTD_isError(countSize)) return countSize; op += countSize; } } *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2)); { size_t const bitstreamSize = ZSTD_encodeSequences( op, oend - op, CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets); if (ZSTD_isError(bitstreamSize)) return bitstreamSize; op += bitstreamSize; } return op - ostart; } MEM_STATIC size_t ZSTD_compressSequences(seqStore_t* seqStorePtr, ZSTD_entropyCTables_t* entropy, ZSTD_compressionParameters const* cParams, void* dst, size_t dstCapacity, size_t srcSize) { size_t const cSize = ZSTD_compressSequences_internal(seqStorePtr, entropy, cParams, dst, dstCapacity); /* If the srcSize <= dstCapacity, then there is enough space to write a * raw uncompressed block. Since we ran out of space, the block must not * be compressible, so fall back to a raw uncompressed block. */ int const uncompressibleError = (cSize == ERROR(dstSize_tooSmall)) && (srcSize <= dstCapacity); if (ZSTD_isError(cSize) && !uncompressibleError) return cSize; /* We check that dictionaries have offset codes available for the first * block. After the first block, the offcode table might not have large * enough codes to represent the offsets in the data. */ if (entropy->offcode_repeatMode == FSE_repeat_valid) entropy->offcode_repeatMode = FSE_repeat_check; /* Check compressibility */ { size_t const minGain = ZSTD_minGain(srcSize); /* note : fixed formula, maybe should depend on compression level, or strategy */ size_t const maxCSize = srcSize - minGain; if (cSize >= maxCSize || uncompressibleError) { entropy->hufCTable_repeatMode = HUF_repeat_none; entropy->offcode_repeatMode = FSE_repeat_none; entropy->matchlength_repeatMode = FSE_repeat_none; entropy->litlength_repeatMode = FSE_repeat_none; return 0; /* block not compressed */ } } assert(!ZSTD_isError(cSize)); /* block is compressed => confirm repcodes in history */ { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqStorePtr->rep[i] = seqStorePtr->repToConfirm[i]; } return cSize; } /* ZSTD_selectBlockCompressor() : * Not static, but internal use only (used by long distance matcher) * assumption : strat is a valid strategy */ typedef size_t (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize); ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict) { static const ZSTD_blockCompressor blockCompressor[2][(unsigned)ZSTD_btultra+1] = { { ZSTD_compressBlock_fast /* default for 0 */, ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btultra }, { ZSTD_compressBlock_fast_extDict /* default for 0 */, ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict,ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btultra_extDict } }; ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1); assert((U32)strat >= (U32)ZSTD_fast); assert((U32)strat <= (U32)ZSTD_btultra); return blockCompressor[extDict!=0][(U32)strat]; } static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr, const BYTE* anchor, size_t lastLLSize) { memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } static void ZSTD_resetSeqStore(seqStore_t* ssPtr) { ssPtr->lit = ssPtr->litStart; ssPtr->sequences = ssPtr->sequencesStart; ssPtr->longLengthID = 0; } static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_compressBlock_internal : dstCapacity = %u", (U32)dstCapacity); if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) return 0; /* don't even attempt compression below a certain srcSize */ ZSTD_resetSeqStore(&(zc->seqStore)); /* limited update after a very long match */ { const BYTE* const base = zc->base; const BYTE* const istart = (const BYTE*)src; const U32 current = (U32)(istart-base); if (current > zc->nextToUpdate + 384) zc->nextToUpdate = current - MIN(192, (U32)(current - zc->nextToUpdate - 384)); } /* find and store sequences */ { U32 const extDict = zc->lowLimit < zc->dictLimit; const ZSTD_blockCompressor blockCompressor = zc->appliedParams.ldmParams.enableLdm ? (extDict ? ZSTD_compressBlock_ldm_extDict : ZSTD_compressBlock_ldm) : ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, extDict); size_t const lastLLSize = blockCompressor(zc, src, srcSize); const BYTE* const anchor = (const BYTE*)src + srcSize - lastLLSize; ZSTD_storeLastLiterals(&zc->seqStore, anchor, lastLLSize); } /* encode */ return ZSTD_compressSequences(&zc->seqStore, zc->entropy, &zc->appliedParams.cParams, dst, dstCapacity, srcSize); } /*! ZSTD_compress_frameChunk() : * Compress a chunk of data into one or multiple blocks. * All blocks will be terminated, all input will be consumed. * Function will issue an error if there is not enough `dstCapacity` to hold the compressed content. * Frame is supposed already started (header already produced) * @return : compressed size, or an error code */ static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastFrameChunk) { size_t blockSize = cctx->blockSize; size_t remaining = srcSize; const BYTE* ip = (const BYTE*)src; BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog; assert(cctx->appliedParams.cParams.windowLog <= 31); DEBUGLOG(5, "ZSTD_compress_frameChunk (blockSize=%u)", (U32)blockSize); if (cctx->appliedParams.fParams.checksumFlag && srcSize) XXH64_update(&cctx->xxhState, src, srcSize); while (remaining) { U32 const lastBlock = lastFrameChunk & (blockSize >= remaining); if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE) return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */ if (remaining < blockSize) blockSize = remaining; /* preemptive overflow correction: * 1. correction is large enough: * lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog - blockSize * 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog * * current - newCurrent * > (3<<29 + 1<<windowLog - blockSize) - (1<<windowLog + 1<<chainLog) * > (3<<29 - blockSize) - (1<<chainLog) * > (3<<29 - blockSize) - (1<<30) (NOTE: chainLog <= 30) * > 1<<29 - 1<<17 * * 2. (ip+blockSize - cctx->base) doesn't overflow: * In 32 bit mode we limit windowLog to 30 so we don't get * differences larger than 1<<31-1. * 3. cctx->lowLimit < 1<<32: * windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32. */ if (cctx->lowLimit > (3U<<29)) { U32 const cycleMask = ((U32)1 << ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy)) - 1; U32 const current = (U32)(ip - cctx->base); U32 const newCurrent = (current & cycleMask) + ((U32)1 << cctx->appliedParams.cParams.windowLog); U32 const correction = current - newCurrent; ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); assert(current > newCurrent); assert(correction > 1<<28); /* Loose bound, should be about 1<<29 */ ZSTD_reduceIndex(cctx, correction); cctx->base += correction; cctx->dictBase += correction; cctx->lowLimit -= correction; cctx->dictLimit -= correction; if (cctx->nextToUpdate < correction) cctx->nextToUpdate = 0; else cctx->nextToUpdate -= correction; DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x\n", correction, cctx->lowLimit); } /* enforce maxDist */ if ((U32)(ip+blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) { U32 const newLowLimit = (U32)(ip+blockSize - cctx->base) - maxDist; if (cctx->lowLimit < newLowLimit) cctx->lowLimit = newLowLimit; if (cctx->dictLimit < cctx->lowLimit) cctx->dictLimit = cctx->lowLimit; } { size_t cSize = ZSTD_compressBlock_internal(cctx, op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, ip, blockSize); if (ZSTD_isError(cSize)) return cSize; if (cSize == 0) { /* block is not compressible */ U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(blockSize << 3); if (blockSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall); MEM_writeLE32(op, cBlockHeader24); /* 4th byte will be overwritten */ memcpy(op + ZSTD_blockHeaderSize, ip, blockSize); cSize = ZSTD_blockHeaderSize + blockSize; } else { U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); MEM_writeLE24(op, cBlockHeader24); cSize += ZSTD_blockHeaderSize; } ip += blockSize; assert(remaining >= blockSize); remaining -= blockSize; op += cSize; assert(dstCapacity >= cSize); dstCapacity -= cSize; DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u", (U32)cSize); } } if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending; return op-ostart; } static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity, ZSTD_CCtx_params params, U64 pledgedSrcSize, U32 dictID) { BYTE* const op = (BYTE*)dst; U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */ U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */ U32 const checksumFlag = params.fParams.checksumFlag>0; U32 const windowSize = (U32)1 << params.cParams.windowLog; U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize); BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3); U32 const fcsCode = params.fParams.contentSizeFlag ? (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */ BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) ); size_t pos=0; if (dstCapacity < ZSTD_frameHeaderSize_max) return ERROR(dstSize_tooSmall); DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u", !params.fParams.noDictIDFlag, dictID, dictIDSizeCode); if (params.format == ZSTD_f_zstd1) { MEM_writeLE32(dst, ZSTD_MAGICNUMBER); pos = 4; } op[pos++] = frameHeaderDecriptionByte; if (!singleSegment) op[pos++] = windowLogByte; switch(dictIDSizeCode) { default: assert(0); /* impossible */ case 0 : break; case 1 : op[pos] = (BYTE)(dictID); pos++; break; case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break; case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break; } switch(fcsCode) { default: assert(0); /* impossible */ case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break; case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break; case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break; case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break; } return pos; } static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 frame, U32 lastFrameChunk) { const BYTE* const ip = (const BYTE*) src; size_t fhSize = 0; DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u", cctx->stage); if (cctx->stage==ZSTDcs_created) return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */ if (frame && (cctx->stage==ZSTDcs_init)) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, cctx->pledgedSrcSizePlusOne-1, cctx->dictID); if (ZSTD_isError(fhSize)) return fhSize; dstCapacity -= fhSize; dst = (char*)dst + fhSize; cctx->stage = ZSTDcs_ongoing; } if (!srcSize) return fhSize; /* do not generate an empty block if no input */ /* Check if blocks follow each other */ if (src != cctx->nextSrc) { /* not contiguous */ size_t const distanceFromBase = (size_t)(cctx->nextSrc - cctx->base); cctx->lowLimit = cctx->dictLimit; assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */ cctx->dictLimit = (U32)distanceFromBase; cctx->dictBase = cctx->base; cctx->base = ip - distanceFromBase; cctx->nextToUpdate = cctx->dictLimit; if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE) cctx->lowLimit = cctx->dictLimit; /* too small extDict */ } cctx->nextSrc = ip + srcSize; /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */ if ((ip+srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) { ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase; U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx; cctx->lowLimit = lowLimitMax; } DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (U32)cctx->blockSize); { size_t const cSize = frame ? ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) : ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize); if (ZSTD_isError(cSize)) return cSize; cctx->consumedSrcSize += srcSize; return cSize + fhSize; } } size_t ZSTD_compressContinue (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */); } size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx) { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(cctx->appliedParams, 0, 0); return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog); } size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const blockSizeMax = ZSTD_getBlockSize(cctx); if (srcSize > blockSizeMax) return ERROR(srcSize_wrong); return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */); } /*! ZSTD_loadDictionaryContent() : * @return : 0, or an error code */ static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx* zc, const void* src, size_t srcSize) { const BYTE* const ip = (const BYTE*) src; const BYTE* const iend = ip + srcSize; /* input becomes current prefix */ zc->lowLimit = zc->dictLimit; zc->dictLimit = (U32)(zc->nextSrc - zc->base); zc->dictBase = zc->base; zc->base = ip - zc->dictLimit; zc->nextToUpdate = zc->dictLimit; zc->loadedDictEnd = zc->appliedParams.forceWindow ? 0 : (U32)(iend - zc->base); zc->nextSrc = iend; if (srcSize <= HASH_READ_SIZE) return 0; switch(zc->appliedParams.cParams.strategy) { case ZSTD_fast: ZSTD_fillHashTable (zc, iend, zc->appliedParams.cParams.searchLength); break; case ZSTD_dfast: ZSTD_fillDoubleHashTable (zc, iend, zc->appliedParams.cParams.searchLength); break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: if (srcSize >= HASH_READ_SIZE) ZSTD_insertAndFindFirstIndex(zc, iend-HASH_READ_SIZE, zc->appliedParams.cParams.searchLength); break; case ZSTD_btlazy2: case ZSTD_btopt: case ZSTD_btultra: if (srcSize >= HASH_READ_SIZE) ZSTD_updateTree(zc, iend-HASH_READ_SIZE, iend, (U32)1 << zc->appliedParams.cParams.searchLog, zc->appliedParams.cParams.searchLength); break; default: assert(0); /* not possible : not a valid strategy id */ } zc->nextToUpdate = (U32)(iend - zc->base); return 0; } /* Dictionaries that assign zero probability to symbols that show up causes problems when FSE encoding. Refuse dictionaries that assign zero probability to symbols that we may encounter during compression. NOTE: This behavior is not standard and could be improved in the future. */ static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) { U32 s; if (dictMaxSymbolValue < maxSymbolValue) return ERROR(dictionary_corrupted); for (s = 0; s <= maxSymbolValue; ++s) { if (normalizedCounter[s] == 0) return ERROR(dictionary_corrupted); } return 0; } /* Dictionary format : * See : * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format */ /*! ZSTD_loadZstdDictionary() : * @return : 0, or an error code * assumptions : magic number supposed already checked * dictSize supposed > 8 */ static size_t ZSTD_loadZstdDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { const BYTE* dictPtr = (const BYTE*)dict; const BYTE* const dictEnd = dictPtr + dictSize; short offcodeNCount[MaxOff+1]; unsigned offcodeMaxValue = MaxOff; ZSTD_STATIC_ASSERT(sizeof(cctx->entropy->workspace) >= (1<<MAX(MLFSELog,LLFSELog))); dictPtr += 4; /* skip magic number */ cctx->dictID = cctx->appliedParams.fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr); dictPtr += 4; { unsigned maxSymbolValue = 255; size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)cctx->entropy->hufCTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr); if (HUF_isError(hufHeaderSize)) return ERROR(dictionary_corrupted); if (maxSymbolValue < 255) return ERROR(dictionary_corrupted); dictPtr += hufHeaderSize; } { unsigned offcodeLog; size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted); if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted); /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */ CHECK_E( FSE_buildCTable_wksp(cctx->entropy->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, cctx->entropy->workspace, sizeof(cctx->entropy->workspace)), dictionary_corrupted); dictPtr += offcodeHeaderSize; } { short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog; size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted); if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted); /* Every match length code must have non-zero probability */ CHECK_F( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML)); CHECK_E( FSE_buildCTable_wksp(cctx->entropy->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, cctx->entropy->workspace, sizeof(cctx->entropy->workspace)), dictionary_corrupted); dictPtr += matchlengthHeaderSize; } { short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog; size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted); if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted); /* Every literal length code must have non-zero probability */ CHECK_F( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL)); CHECK_E( FSE_buildCTable_wksp(cctx->entropy->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, cctx->entropy->workspace, sizeof(cctx->entropy->workspace)), dictionary_corrupted); dictPtr += litlengthHeaderSize; } if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted); cctx->seqStore.rep[0] = MEM_readLE32(dictPtr+0); cctx->seqStore.rep[1] = MEM_readLE32(dictPtr+4); cctx->seqStore.rep[2] = MEM_readLE32(dictPtr+8); dictPtr += 12; { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); U32 offcodeMax = MaxOff; if (dictContentSize <= ((U32)-1) - 128 KB) { U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */ } /* All offset values <= dictContentSize + 128 KB must be representable */ CHECK_F (ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff))); /* All repCodes must be <= dictContentSize and != 0*/ { U32 u; for (u=0; u<3; u++) { if (cctx->seqStore.rep[u] == 0) return ERROR(dictionary_corrupted); if (cctx->seqStore.rep[u] > dictContentSize) return ERROR(dictionary_corrupted); } } cctx->entropy->hufCTable_repeatMode = HUF_repeat_valid; cctx->entropy->offcode_repeatMode = FSE_repeat_valid; cctx->entropy->matchlength_repeatMode = FSE_repeat_valid; cctx->entropy->litlength_repeatMode = FSE_repeat_valid; return ZSTD_loadDictionaryContent(cctx, dictPtr, dictContentSize); } } /** ZSTD_compress_insertDictionary() : * @return : 0, or an error code */ static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode) { DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize); if ((dict==NULL) || (dictSize<=8)) return 0; /* dict restricted modes */ if (dictMode==ZSTD_dm_rawContent) return ZSTD_loadDictionaryContent(cctx, dict, dictSize); if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) { if (dictMode == ZSTD_dm_auto) { DEBUGLOG(4, "raw content dictionary detected"); return ZSTD_loadDictionaryContent(cctx, dict, dictSize); } if (dictMode == ZSTD_dm_fullDict) return ERROR(dictionary_wrong); assert(0); /* impossible */ } /* dict as full zstd dictionary */ return ZSTD_loadZstdDictionary(cctx, dict, dictSize); } /*! ZSTD_compressBegin_internal() : * @return : 0, or an error code */ size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params.cParams.windowLog); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (cdict && cdict->dictContentSize>0) { cctx->requestedParams = params; return ZSTD_copyCCtx_internal(cctx, cdict->refContext, params.cParams.windowLog, params.fParams, pledgedSrcSize, zbuff); } CHECK_F( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, ZSTDcrp_continue, zbuff) ); return ZSTD_compress_insertDictionary(cctx, dict, dictSize, dictMode); } size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params.cParams.windowLog); /* compression parameters verification and optimization */ CHECK_F( ZSTD_checkCParams(params.cParams) ); return ZSTD_compressBegin_internal(cctx, dict, dictSize, dictMode, cdict, params, pledgedSrcSize, ZSTDb_not_buffered); } /*! ZSTD_compressBegin_advanced() : * @return : 0, or an error code */ size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); return ZSTD_compressBegin_advanced_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL /*cdict*/, cctxParams, pledgedSrcSize); } size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize); ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); DEBUGLOG(4, "ZSTD_compressBegin_usingDict"); return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered); } size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel) { return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); } /*! ZSTD_writeEpilogue() : * Ends a frame. * @return : nb of bytes written into dst (or an error code) */ static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity) { BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; size_t fhSize = 0; DEBUGLOG(5, "ZSTD_writeEpilogue"); if (cctx->stage == ZSTDcs_created) return ERROR(stage_wrong); /* init missing */ /* special case : empty frame */ if (cctx->stage == ZSTDcs_init) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0); if (ZSTD_isError(fhSize)) return fhSize; dstCapacity -= fhSize; op += fhSize; cctx->stage = ZSTDcs_ongoing; } if (cctx->stage != ZSTDcs_ending) { /* write one last empty block, make it the "last" block */ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0; if (dstCapacity<4) return ERROR(dstSize_tooSmall); MEM_writeLE32(op, cBlockHeader24); op += ZSTD_blockHeaderSize; dstCapacity -= ZSTD_blockHeaderSize; } if (cctx->appliedParams.fParams.checksumFlag) { U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); if (dstCapacity<4) return ERROR(dstSize_tooSmall); MEM_writeLE32(op, checksum); op += 4; } cctx->stage = ZSTDcs_created; /* return to "created but no init" status */ return op-ostart; } size_t ZSTD_compressEnd (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t endResult; size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 1 /* last chunk */); if (ZSTD_isError(cSize)) return cSize; endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize); if (ZSTD_isError(endResult)) return endResult; if (cctx->appliedParams.fParams.contentSizeFlag) { /* control src size */ DEBUGLOG(4, "end of frame : controlling src size"); if (cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1) { DEBUGLOG(4, "error : pledgedSrcSize = %u, while realSrcSize = %u", (U32)cctx->pledgedSrcSizePlusOne-1, (U32)cctx->consumedSrcSize); return ERROR(srcSize_wrong); } } return cSize + endResult; } static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); DEBUGLOG(4, "ZSTD_compress_internal"); return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, cctxParams); } size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { DEBUGLOG(4, "ZSTD_compress_advanced"); CHECK_F(ZSTD_checkCParams(params.cParams)); return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params); } /* Internal */ size_t ZSTD_compress_advanced_internal( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_CCtx_params params) { DEBUGLOG(4, "ZSTD_compress_advanced_internal"); CHECK_F( ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dm_auto, NULL, params, srcSize, ZSTDb_not_buffered) ); return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize ? srcSize : 1, dict ? dictSize : 0); params.fParams.contentSizeFlag = 1; DEBUGLOG(4, "ZSTD_compress_usingDict (level=%i, srcSize=%u, dictSize=%u)", compressionLevel, (U32)srcSize, (U32)dictSize); return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params); } size_t ZSTD_compressCCtx (ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { return ZSTD_compress_usingDict(ctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel); } size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { size_t result; ZSTD_CCtx ctxBody; memset(&ctxBody, 0, sizeof(ctxBody)); ctxBody.customMem = ZSTD_defaultCMem; result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel); ZSTD_free(ctxBody.workSpace, ZSTD_defaultCMem); /* can't free ctxBody itself, as it's on stack; free only heap content */ return result; } /* ===== Dictionary API ===== */ /*! ZSTD_estimateCDictSize_advanced() : * Estimate amount of memory that will be needed to create a dictionary with following arguments */ size_t ZSTD_estimateCDictSize_advanced( size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod) { DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (U32)sizeof(ZSTD_CDict)); DEBUGLOG(5, "CCtx estimate : %u", (U32)ZSTD_estimateCCtxSize_usingCParams(cParams)); return sizeof(ZSTD_CDict) + ZSTD_estimateCCtxSize_usingCParams(cParams) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); } size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); } size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support sizeof on NULL */ DEBUGLOG(5, "sizeof(*cdict) : %u", (U32)sizeof(*cdict)); DEBUGLOG(5, "ZSTD_sizeof_CCtx : %u", (U32)ZSTD_sizeof_CCtx(cdict->refContext)); return ZSTD_sizeof_CCtx(cdict->refContext) + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict); } static size_t ZSTD_initCDict_internal( ZSTD_CDict* cdict, const void* dictBuffer, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode, ZSTD_compressionParameters cParams) { DEBUGLOG(3, "ZSTD_initCDict_internal, mode %u", (U32)dictMode); if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) { cdict->dictBuffer = NULL; cdict->dictContent = dictBuffer; } else { void* const internalBuffer = ZSTD_malloc(dictSize, cdict->refContext->customMem); cdict->dictBuffer = internalBuffer; cdict->dictContent = internalBuffer; if (!internalBuffer) return ERROR(memory_allocation); memcpy(internalBuffer, dictBuffer, dictSize); } cdict->dictContentSize = dictSize; { ZSTD_CCtx_params cctxParams = cdict->refContext->requestedParams; cctxParams.cParams = cParams; CHECK_F( ZSTD_compressBegin_internal(cdict->refContext, cdict->dictContent, dictSize, dictMode, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered) ); } return 0; } ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode, ZSTD_compressionParameters cParams, ZSTD_customMem customMem) { DEBUGLOG(3, "ZSTD_createCDict_advanced, mode %u", (U32)dictMode); if (!customMem.customAlloc ^ !customMem.customFree) return NULL; { ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem); ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(customMem); if (!cdict || !cctx) { ZSTD_free(cdict, customMem); ZSTD_freeCCtx(cctx); return NULL; } cdict->refContext = cctx; if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dictBuffer, dictSize, dictLoadMethod, dictMode, cParams) )) { ZSTD_freeCDict(cdict); return NULL; } return cdict; } } ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dm_auto, cParams, ZSTD_defaultCMem); } ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); return ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byRef, ZSTD_dm_auto, cParams, ZSTD_defaultCMem); } size_t ZSTD_freeCDict(ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support free on NULL */ { ZSTD_customMem const cMem = cdict->refContext->customMem; ZSTD_freeCCtx(cdict->refContext); ZSTD_free(cdict->dictBuffer, cMem); ZSTD_free(cdict, cMem); return 0; } } /*! ZSTD_initStaticCDict_advanced() : * Generate a digested dictionary in provided memory area. * workspace: The memory area to emplace the dictionary into. * Provided pointer must 8-bytes aligned. * It must outlive dictionary usage. * workspaceSize: Use ZSTD_estimateCDictSize() * to determine how large workspace must be. * cParams : use ZSTD_getCParams() to transform a compression level * into its relevants cParams. * @return : pointer to ZSTD_CDict*, or NULL if error (size too small) * Note : there is no corresponding "free" function. * Since workspace was allocated externally, it must be freed externally. */ ZSTD_CDict* ZSTD_initStaticCDict(void* workspace, size_t workspaceSize, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode, ZSTD_compressionParameters cParams) { size_t const cctxSize = ZSTD_estimateCCtxSize_usingCParams(cParams); size_t const neededSize = sizeof(ZSTD_CDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize) + cctxSize; ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace; void* ptr; DEBUGLOG(4, "(size_t)workspace & 7 : %u", (U32)(size_t)workspace & 7); if ((size_t)workspace & 7) return NULL; /* 8-aligned */ DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u", (U32)workspaceSize, (U32)neededSize, (U32)(workspaceSize < neededSize)); if (workspaceSize < neededSize) return NULL; if (dictLoadMethod == ZSTD_dlm_byCopy) { memcpy(cdict+1, dict, dictSize); dict = cdict+1; ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize; } else { ptr = cdict+1; } cdict->refContext = ZSTD_initStaticCCtx(ptr, cctxSize); if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dict, dictSize, ZSTD_dlm_byRef, dictMode, cParams) )) return NULL; return cdict; } ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict) { return cdict->refContext->appliedParams.cParams; } /* ZSTD_compressBegin_usingCDict_advanced() : * cdict must be != NULL */ size_t ZSTD_compressBegin_usingCDict_advanced( ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) { DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced"); if (cdict==NULL) return ERROR(dictionary_wrong); { ZSTD_CCtx_params params = cctx->requestedParams; params.cParams = ZSTD_getCParamsFromCDict(cdict); params.fParams = fParams; return ZSTD_compressBegin_internal(cctx, NULL, 0, ZSTD_dm_auto, cdict, params, pledgedSrcSize, ZSTDb_not_buffered); } } /* ZSTD_compressBegin_usingCDict() : * pledgedSrcSize=0 means "unknown" * if pledgedSrcSize>0, it will enable contentSizeFlag */ size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag); return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, 0); } size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) { CHECK_F (ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } /*! ZSTD_compress_usingCDict() : * Compression using a digested Dictionary. * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times. * Note that compression parameters are decided at CDict creation time * while frame parameters are hardcoded */ size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); } /* ****************************************************************** * Streaming ********************************************************************/ ZSTD_CStream* ZSTD_createCStream(void) { DEBUGLOG(3, "ZSTD_createCStream"); return ZSTD_createCStream_advanced(ZSTD_defaultCMem); } ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize) { return ZSTD_initStaticCCtx(workspace, workspaceSize); } ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem) { /* CStream and CCtx are now same object */ return ZSTD_createCCtx_advanced(customMem); } size_t ZSTD_freeCStream(ZSTD_CStream* zcs) { return ZSTD_freeCCtx(zcs); /* same object */ } /*====== Initialization ======*/ size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; } size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; } static size_t ZSTD_resetCStream_internal(ZSTD_CStream* zcs, const void* const dict, size_t const dictSize, ZSTD_dictMode_e const dictMode, const ZSTD_CDict* const cdict, ZSTD_CCtx_params const params, unsigned long long const pledgedSrcSize) { DEBUGLOG(4, "ZSTD_resetCStream_internal"); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ CHECK_F( ZSTD_compressBegin_internal(zcs, dict, dictSize, dictMode, cdict, params, pledgedSrcSize, ZSTDb_buffered) ); zcs->inToCompress = 0; zcs->inBuffPos = 0; zcs->inBuffTarget = zcs->blockSize + (zcs->blockSize == pledgedSrcSize); /* for small input: avoid automatic flush on reaching end of block, since it would require to add a 3-bytes null block to end frame */ zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; zcs->streamStage = zcss_load; zcs->frameEnded = 0; return 0; /* ready to go */ } /* ZSTD_resetCStream(): * pledgedSrcSize == 0 means "unknown" */ size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params params = zcs->requestedParams; DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (U32)pledgedSrcSize); if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; params.fParams.contentSizeFlag = 1; params.cParams = ZSTD_getCParamsFromCCtxParams(params, pledgedSrcSize, 0); return ZSTD_resetCStream_internal(zcs, NULL, 0, ZSTD_dm_auto, zcs->cdict, params, pledgedSrcSize); } /*! ZSTD_initCStream_internal() : * Note : for lib/compress only. Used by zstdmt_compress.c. * Assumption 1 : params are valid * Assumption 2 : either dict, or cdict, is defined, not both */ size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, const void* dict, size_t dictSize, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_initCStream_internal"); assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (dict && dictSize >= 8) { DEBUGLOG(4, "loading dictionary of size %u", (U32)dictSize); if (zcs->staticSize) { /* static CCtx : never uses malloc */ /* incompatible with internal cdict creation */ return ERROR(memory_allocation); } ZSTD_freeCDict(zcs->cdictLocal); zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dm_auto, params.cParams, zcs->customMem); zcs->cdict = zcs->cdictLocal; if (zcs->cdictLocal == NULL) return ERROR(memory_allocation); } else { if (cdict) { params.cParams = ZSTD_getCParamsFromCDict(cdict); /* cParams are enforced from cdict; it includes windowLog */ } ZSTD_freeCDict(zcs->cdictLocal); zcs->cdictLocal = NULL; zcs->cdict = cdict; } params.compressionLevel = ZSTD_CLEVEL_CUSTOM; /* enforce usage of cParams, instead of a dynamic derivation from cLevel (but does that happen ?) */ zcs->requestedParams = params; return ZSTD_resetCStream_internal(zcs, NULL, 0, ZSTD_dm_auto, zcs->cdict, params, pledgedSrcSize); } /* ZSTD_initCStream_usingCDict_advanced() : * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */ size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced"); if (!cdict) return ERROR(dictionary_wrong); /* cannot handle NULL cdict (does not know what to do) */ { ZSTD_CCtx_params params = zcs->requestedParams; params.cParams = ZSTD_getCParamsFromCDict(cdict); params.fParams = fParams; return ZSTD_initCStream_internal(zcs, NULL, 0, cdict, params, pledgedSrcSize); } } /* note : cdict must outlive compression session */ size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 0 /* contentSizeFlag */, 0 /* checksum */, 0 /* hideDictID */ }; DEBUGLOG(4, "ZSTD_initCStream_usingCDict"); return ZSTD_initCStream_usingCDict_advanced(zcs, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); /* note : will check that cdict != NULL */ } /* ZSTD_initCStream_advanced() : * pledgedSrcSize must be correct. * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. * dict is loaded with default parameters ZSTD_dm_auto and ZSTD_dlm_byCopy. */ size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params); DEBUGLOG(4, "ZSTD_initCStream_advanced: pledgedSrcSize=%u, flag=%u", (U32)pledgedSrcSize, params.fParams.contentSizeFlag); CHECK_F( ZSTD_checkCParams(params.cParams) ); if ((pledgedSrcSize==0) && (params.fParams.contentSizeFlag==0)) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* for compatibility with older programs relying on this behavior. Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. This line will be removed in the future. */ return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL /*cdict*/, cctxParams, pledgedSrcSize); } size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize); ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params); return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN); } size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss) { U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; /* temporary : 0 interpreted as "unknown" during transition period. Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. `0` will be interpreted as "empty" in the future */ ZSTD_parameters const params = ZSTD_getParams(compressionLevel, pledgedSrcSize, 0); ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params); return ZSTD_initCStream_internal(zcs, NULL, 0, NULL, cctxParams, pledgedSrcSize); } size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel) { DEBUGLOG(4, "ZSTD_initCStream"); return ZSTD_initCStream_srcSize(zcs, compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN); } /*====== Compression ======*/ MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t const length = MIN(dstCapacity, srcSize); if (length) memcpy(dst, src, length); return length; } /** ZSTD_compressStream_generic(): * internal function for all *compressStream*() variants and *compress_generic() * non-static, because can be called from zstdmt.c * @return : hint size for next input */ size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective const flushMode) { const char* const istart = (const char*)input->src; const char* const iend = istart + input->size; const char* ip = istart + input->pos; char* const ostart = (char*)output->dst; char* const oend = ostart + output->size; char* op = ostart + output->pos; U32 someMoreWork = 1; /* check expectations */ DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (U32)flushMode); assert(zcs->inBuff != NULL); assert(zcs->inBuffSize > 0); assert(zcs->outBuff != NULL); assert(zcs->outBuffSize > 0); assert(output->pos <= output->size); assert(input->pos <= input->size); while (someMoreWork) { switch(zcs->streamStage) { case zcss_init: /* call ZSTD_initCStream() first ! */ return ERROR(init_missing); case zcss_load: if ( (flushMode == ZSTD_e_end) && ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */ && (zcs->inBuffPos == 0) ) { /* shortcut to compression pass directly into output buffer */ size_t const cSize = ZSTD_compressEnd(zcs, op, oend-op, ip, iend-ip); DEBUGLOG(4, "ZSTD_compressEnd : %u", (U32)cSize); if (ZSTD_isError(cSize)) return cSize; ip = iend; op += cSize; zcs->frameEnded = 1; ZSTD_startNewCompression(zcs); someMoreWork = 0; break; } /* complete loading into inBuffer */ { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos; size_t const loaded = ZSTD_limitCopy( zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend-ip); zcs->inBuffPos += loaded; ip += loaded; if ( (flushMode == ZSTD_e_continue) && (zcs->inBuffPos < zcs->inBuffTarget) ) { /* not enough input to fill full block : stop here */ someMoreWork = 0; break; } if ( (flushMode == ZSTD_e_flush) && (zcs->inBuffPos == zcs->inToCompress) ) { /* empty */ someMoreWork = 0; break; } } /* compress current block (note : this stage cannot be stopped in the middle) */ DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode); { void* cDst; size_t cSize; size_t const iSize = zcs->inBuffPos - zcs->inToCompress; size_t oSize = oend-op; unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend); if (oSize >= ZSTD_compressBound(iSize)) cDst = op; /* compress into output buffer, to skip flush stage */ else cDst = zcs->outBuff, oSize = zcs->outBuffSize; cSize = lastBlock ? ZSTD_compressEnd(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize) : ZSTD_compressContinue(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize); if (ZSTD_isError(cSize)) return cSize; zcs->frameEnded = lastBlock; /* prepare next block */ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize; if (zcs->inBuffTarget > zcs->inBuffSize) zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u", (U32)zcs->inBuffTarget, (U32)zcs->inBuffSize); if (!lastBlock) assert(zcs->inBuffTarget <= zcs->inBuffSize); zcs->inToCompress = zcs->inBuffPos; if (cDst == op) { /* no need to flush */ op += cSize; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed directly in outBuffer"); someMoreWork = 0; ZSTD_startNewCompression(zcs); } break; } zcs->outBuffContentSize = cSize; zcs->outBuffFlushedSize = 0; zcs->streamStage = zcss_flush; /* pass-through to flush stage */ } /* fall-through */ case zcss_flush: DEBUGLOG(5, "flush stage"); { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize; size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush); DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u", (U32)toFlush, (U32)(oend-op), (U32)flushed); op += flushed; zcs->outBuffFlushedSize += flushed; if (toFlush!=flushed) { /* flush not fully completed, presumably because dst is too small */ assert(op==oend); someMoreWork = 0; break; } zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed on flush"); someMoreWork = 0; ZSTD_startNewCompression(zcs); break; } zcs->streamStage = zcss_load; break; } default: /* impossible */ assert(0); } } input->pos = ip - istart; output->pos = op - ostart; if (zcs->frameEnded) return 0; { size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos; if (hintInSize==0) hintInSize = zcs->blockSize; return hintInSize; } } size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { /* check conditions */ if (output->pos > output->size) return ERROR(GENERIC); if (input->pos > input->size) return ERROR(GENERIC); return ZSTD_compressStream_generic(zcs, output, input, ZSTD_e_continue); } size_t ZSTD_compress_generic (ZSTD_CCtx* cctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective endOp) { DEBUGLOG(5, "ZSTD_compress_generic, endOp=%u ", (U32)endOp); /* check conditions */ if (output->pos > output->size) return ERROR(GENERIC); if (input->pos > input->size) return ERROR(GENERIC); assert(cctx!=NULL); /* transparent initialization stage */ if (cctx->streamStage == zcss_init) { ZSTD_CCtx_params params = cctx->requestedParams; ZSTD_prefixDict const prefixDict = cctx->prefixDict; memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */ assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */ DEBUGLOG(4, "ZSTD_compress_generic : transparent init stage"); if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = input->size + 1; /* auto-fix pledgedSrcSize */ params.cParams = ZSTD_getCParamsFromCCtxParams( cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/); #ifdef ZSTD_MULTITHREAD if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) params.nbThreads = 1; /* do not invoke multi-threading when src size is too small */ if (params.nbThreads > 1) { if (cctx->mtctx == NULL || (params.nbThreads != ZSTDMT_getNbThreads(cctx->mtctx))) { DEBUGLOG(4, "ZSTD_compress_generic: creating new mtctx for nbThreads=%u (previous: %u)", params.nbThreads, ZSTDMT_getNbThreads(cctx->mtctx)); ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = ZSTDMT_createCCtx_advanced(params.nbThreads, cctx->customMem); if (cctx->mtctx == NULL) return ERROR(memory_allocation); } DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbThreads=%u", params.nbThreads); CHECK_F( ZSTDMT_initCStream_internal( cctx->mtctx, prefixDict.dict, prefixDict.dictSize, ZSTD_dm_rawContent, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); cctx->streamStage = zcss_load; cctx->appliedParams.nbThreads = params.nbThreads; } else #endif { CHECK_F( ZSTD_resetCStream_internal( cctx, prefixDict.dict, prefixDict.dictSize, prefixDict.dictMode, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); assert(cctx->streamStage == zcss_load); assert(cctx->appliedParams.nbThreads <= 1); } } /* compression stage */ #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbThreads > 1) { size_t const flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp); if ( ZSTD_isError(flushMin) || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */ ZSTD_startNewCompression(cctx); } return flushMin; } #endif CHECK_F( ZSTD_compressStream_generic(cctx, output, input, endOp) ); DEBUGLOG(5, "completed ZSTD_compress_generic"); return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */ } size_t ZSTD_compress_generic_simpleArgs ( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, size_t* dstPos, const void* src, size_t srcSize, size_t* srcPos, ZSTD_EndDirective endOp) { ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; ZSTD_inBuffer input = { src, srcSize, *srcPos }; /* ZSTD_compress_generic() will check validity of dstPos and srcPos */ size_t const cErr = ZSTD_compress_generic(cctx, &output, &input, endOp); *dstPos = output.pos; *srcPos = input.pos; return cErr; } /*====== Finalize ======*/ /*! ZSTD_flushStream() : * @return : amount of data remaining to flush */ size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = { NULL, 0, 0 }; if (output->pos > output->size) return ERROR(GENERIC); CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_flush) ); return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */ } size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = { NULL, 0, 0 }; if (output->pos > output->size) return ERROR(GENERIC); CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_end) ); { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE; size_t const checksumSize = zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4; size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize + lastBlockSize + checksumSize; DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (U32)toFlush); return toFlush; } } /*-===== Pre-defined compression levels =====-*/ #define ZSTD_MAX_CLEVEL 22 int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; } static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = { { /* "default" - guarantees a monotonically increasing memory budget */ /* W, C, H, S, L, TL, strat */ { 18, 12, 12, 1, 7, 16, ZSTD_fast }, /* level 0 - never used */ { 19, 13, 14, 1, 7, 16, ZSTD_fast }, /* level 1 */ { 19, 15, 16, 1, 6, 16, ZSTD_fast }, /* level 2 */ { 20, 16, 17, 1, 5, 16, ZSTD_dfast }, /* level 3 */ { 20, 17, 18, 1, 5, 16, ZSTD_dfast }, /* level 4 */ { 20, 17, 18, 2, 5, 16, ZSTD_greedy }, /* level 5 */ { 21, 17, 19, 2, 5, 16, ZSTD_lazy }, /* level 6 */ { 21, 18, 19, 3, 5, 16, ZSTD_lazy }, /* level 7 */ { 21, 18, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */ { 21, 19, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 9 */ { 21, 19, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */ { 22, 20, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */ { 22, 20, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 13 */ { 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 14 */ { 22, 21, 22, 4, 5, 16, ZSTD_btlazy2 }, /* level 15 */ { 22, 21, 22, 4, 5, 48, ZSTD_btopt }, /* level 16 */ { 23, 22, 22, 4, 4, 48, ZSTD_btopt }, /* level 17 */ { 23, 22, 22, 5, 3, 64, ZSTD_btopt }, /* level 18 */ { 23, 23, 22, 7, 3,128, ZSTD_btopt }, /* level 19 */ { 25, 25, 23, 7, 3,128, ZSTD_btultra }, /* level 20 */ { 26, 26, 24, 7, 3,256, ZSTD_btultra }, /* level 21 */ { 27, 27, 25, 9, 3,512, ZSTD_btultra }, /* level 22 */ }, { /* for srcSize <= 256 KB */ /* W, C, H, S, L, T, strat */ { 0, 0, 0, 0, 0, 0, ZSTD_fast }, /* level 0 - not used */ { 18, 13, 14, 1, 6, 8, ZSTD_fast }, /* level 1 */ { 18, 14, 13, 1, 5, 8, ZSTD_dfast }, /* level 2 */ { 18, 16, 15, 1, 5, 8, ZSTD_dfast }, /* level 3 */ { 18, 15, 17, 1, 5, 8, ZSTD_greedy }, /* level 4.*/ { 18, 16, 17, 4, 5, 8, ZSTD_greedy }, /* level 5.*/ { 18, 16, 17, 3, 5, 8, ZSTD_lazy }, /* level 6.*/ { 18, 17, 17, 4, 4, 8, ZSTD_lazy }, /* level 7 */ { 18, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ { 18, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ { 18, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ { 18, 18, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 11.*/ { 18, 18, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 12.*/ { 18, 19, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13 */ { 18, 18, 18, 4, 4, 16, ZSTD_btopt }, /* level 14.*/ { 18, 18, 18, 4, 3, 16, ZSTD_btopt }, /* level 15.*/ { 18, 19, 18, 6, 3, 32, ZSTD_btopt }, /* level 16.*/ { 18, 19, 18, 8, 3, 64, ZSTD_btopt }, /* level 17.*/ { 18, 19, 18, 9, 3,128, ZSTD_btopt }, /* level 18.*/ { 18, 19, 18, 10, 3,256, ZSTD_btopt }, /* level 19.*/ { 18, 19, 18, 11, 3,512, ZSTD_btultra }, /* level 20.*/ { 18, 19, 18, 12, 3,512, ZSTD_btultra }, /* level 21.*/ { 18, 19, 18, 13, 3,512, ZSTD_btultra }, /* level 22.*/ }, { /* for srcSize <= 128 KB */ /* W, C, H, S, L, T, strat */ { 17, 12, 12, 1, 7, 8, ZSTD_fast }, /* level 0 - not used */ { 17, 12, 13, 1, 6, 8, ZSTD_fast }, /* level 1 */ { 17, 13, 16, 1, 5, 8, ZSTD_fast }, /* level 2 */ { 17, 16, 16, 2, 5, 8, ZSTD_dfast }, /* level 3 */ { 17, 13, 15, 3, 4, 8, ZSTD_greedy }, /* level 4 */ { 17, 15, 17, 4, 4, 8, ZSTD_greedy }, /* level 5 */ { 17, 16, 17, 3, 4, 8, ZSTD_lazy }, /* level 6 */ { 17, 15, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 7 */ { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ { 17, 17, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 11 */ { 17, 17, 17, 8, 4, 8, ZSTD_lazy2 }, /* level 12 */ { 17, 18, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13.*/ { 17, 17, 17, 7, 3, 8, ZSTD_btopt }, /* level 14.*/ { 17, 17, 17, 7, 3, 16, ZSTD_btopt }, /* level 15.*/ { 17, 18, 17, 7, 3, 32, ZSTD_btopt }, /* level 16.*/ { 17, 18, 17, 7, 3, 64, ZSTD_btopt }, /* level 17.*/ { 17, 18, 17, 7, 3,256, ZSTD_btopt }, /* level 18.*/ { 17, 18, 17, 8, 3,256, ZSTD_btopt }, /* level 19.*/ { 17, 18, 17, 9, 3,256, ZSTD_btultra }, /* level 20.*/ { 17, 18, 17, 10, 3,256, ZSTD_btultra }, /* level 21.*/ { 17, 18, 17, 11, 3,512, ZSTD_btultra }, /* level 22.*/ }, { /* for srcSize <= 16 KB */ /* W, C, H, S, L, T, strat */ { 14, 12, 12, 1, 7, 6, ZSTD_fast }, /* level 0 - not used */ { 14, 14, 14, 1, 6, 6, ZSTD_fast }, /* level 1 */ { 14, 14, 14, 1, 4, 6, ZSTD_fast }, /* level 2 */ { 14, 14, 14, 1, 4, 6, ZSTD_dfast }, /* level 3.*/ { 14, 14, 14, 4, 4, 6, ZSTD_greedy }, /* level 4.*/ { 14, 14, 14, 3, 4, 6, ZSTD_lazy }, /* level 5.*/ { 14, 14, 14, 4, 4, 6, ZSTD_lazy2 }, /* level 6 */ { 14, 14, 14, 5, 4, 6, ZSTD_lazy2 }, /* level 7 */ { 14, 14, 14, 6, 4, 6, ZSTD_lazy2 }, /* level 8.*/ { 14, 15, 14, 6, 4, 6, ZSTD_btlazy2 }, /* level 9.*/ { 14, 15, 14, 3, 3, 6, ZSTD_btopt }, /* level 10.*/ { 14, 15, 14, 6, 3, 8, ZSTD_btopt }, /* level 11.*/ { 14, 15, 14, 6, 3, 16, ZSTD_btopt }, /* level 12.*/ { 14, 15, 14, 6, 3, 24, ZSTD_btopt }, /* level 13.*/ { 14, 15, 15, 6, 3, 48, ZSTD_btopt }, /* level 14.*/ { 14, 15, 15, 6, 3, 64, ZSTD_btopt }, /* level 15.*/ { 14, 15, 15, 6, 3, 96, ZSTD_btopt }, /* level 16.*/ { 14, 15, 15, 6, 3,128, ZSTD_btopt }, /* level 17.*/ { 14, 15, 15, 6, 3,256, ZSTD_btopt }, /* level 18.*/ { 14, 15, 15, 7, 3,256, ZSTD_btopt }, /* level 19.*/ { 14, 15, 15, 8, 3,256, ZSTD_btultra }, /* level 20.*/ { 14, 15, 15, 9, 3,256, ZSTD_btultra }, /* level 21.*/ { 14, 15, 15, 10, 3,256, ZSTD_btultra }, /* level 22.*/ }, }; #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1) /* This function just controls * the monotonic memory budget increase of ZSTD_defaultCParameters[0]. * Run once, on first ZSTD_getCParams() usage, if ZSTD_DEBUG is enabled */ MEM_STATIC void ZSTD_check_compressionLevel_monotonicIncrease_memoryBudget(void) { int level; for (level=1; level<ZSTD_maxCLevel(); level++) { ZSTD_compressionParameters const c1 = ZSTD_defaultCParameters[0][level]; ZSTD_compressionParameters const c2 = ZSTD_defaultCParameters[0][level+1]; assert(c1.windowLog <= c2.windowLog); # define ZSTD_TABLECOST(h,c) ((1<<(h)) + (1<<(c))) assert(ZSTD_TABLECOST(c1.hashLog, c1.chainLog) <= ZSTD_TABLECOST(c2.hashLog, c2.chainLog)); } } #endif /*! ZSTD_getCParams() : * @return ZSTD_compressionParameters structure for a selected compression level, `srcSize` and `dictSize`. * Size values are optional, provide 0 if not known or unused */ ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { size_t const addedSize = srcSizeHint ? 0 : 500; U64 const rSize = srcSizeHint+dictSize ? srcSizeHint+dictSize+addedSize : (U64)-1; U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); /* intentional underflow for srcSizeHint == 0 */ #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1) static int g_monotonicTest = 1; if (g_monotonicTest) { ZSTD_check_compressionLevel_monotonicIncrease_memoryBudget(); g_monotonicTest=0; } #endif DEBUGLOG(4, "ZSTD_getCParams: cLevel=%i, srcSize=%u, dictSize=%u => table %u", compressionLevel, (U32)srcSizeHint, (U32)dictSize, tableID); if (compressionLevel <= 0) compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default; no negative compressionLevel yet */ if (compressionLevel > ZSTD_MAX_CLEVEL) compressionLevel = ZSTD_MAX_CLEVEL; { ZSTD_compressionParameters const cp = ZSTD_defaultCParameters[tableID][compressionLevel]; return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); } } /*! ZSTD_getParams() : * same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`). * All fields of `ZSTD_frameParameters` are set to default (0) */ ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { ZSTD_parameters params; ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize); memset(¶ms, 0, sizeof(params)); params.cParams = cParams; params.fParams.contentSizeFlag = 1; return params; }