/* Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include <string.h> #include "btAlignedObjectArray.h" #include "btConvexHullComputer.h" #include "btMinMax.h" #include "btVector3.h" #ifdef __GNUC__ #include <stdint.h> #elif defined(_MSC_VER) typedef __int32 int32_t; typedef __int64 int64_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #else typedef int32_t int32_t; typedef long long int32_t int64_t; typedef uint32_t uint32_t; typedef unsigned long long int32_t uint64_t; #endif #ifdef _MSC_VER #pragma warning(disable:4458) #endif //The definition of USE_X86_64_ASM is moved into the build system. You can enable it manually by commenting out the following lines //#if (defined(__GNUC__) && defined(__x86_64__) && !defined(__ICL)) // || (defined(__ICL) && defined(_M_X64)) bug in Intel compiler, disable inline assembly // #define USE_X86_64_ASM //#endif //#define DEBUG_CONVEX_HULL //#define SHOW_ITERATIONS #if defined(DEBUG_CONVEX_HULL) || defined(SHOW_ITERATIONS) #include <stdio.h> #endif // -- GODOT start -- namespace VHACD { // -- GODOT end -- // Convex hull implementation based on Preparata and Hong // Ole Kniemeyer, MAXON Computer GmbH class btConvexHullInternal { public: class Point64 { public: int64_t x; int64_t y; int64_t z; Point64(int64_t x, int64_t y, int64_t z) : x(x) , y(y) , z(z) { } bool isZero() { return (x == 0) && (y == 0) && (z == 0); } int64_t dot(const Point64& b) const { return x * b.x + y * b.y + z * b.z; } }; class Point32 { public: int32_t x; int32_t y; int32_t z; int32_t index; Point32() { } Point32(int32_t x, int32_t y, int32_t z) : x(x) , y(y) , z(z) , index(-1) { } bool operator==(const Point32& b) const { return (x == b.x) && (y == b.y) && (z == b.z); } bool operator!=(const Point32& b) const { return (x != b.x) || (y != b.y) || (z != b.z); } bool isZero() { return (x == 0) && (y == 0) && (z == 0); } Point64 cross(const Point32& b) const { return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); } Point64 cross(const Point64& b) const { return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); } int64_t dot(const Point32& b) const { return x * b.x + y * b.y + z * b.z; } int64_t dot(const Point64& b) const { return x * b.x + y * b.y + z * b.z; } Point32 operator+(const Point32& b) const { return Point32(x + b.x, y + b.y, z + b.z); } Point32 operator-(const Point32& b) const { return Point32(x - b.x, y - b.y, z - b.z); } }; class Int128 { public: uint64_t low; uint64_t high; Int128() { } Int128(uint64_t low, uint64_t high) : low(low) , high(high) { } Int128(uint64_t low) : low(low) , high(0) { } Int128(int64_t value) : low(value) , high((value >= 0) ? 0 : (uint64_t)-1LL) { } static Int128 mul(int64_t a, int64_t b); static Int128 mul(uint64_t a, uint64_t b); Int128 operator-() const { return Int128((uint64_t) - (int64_t)low, ~high + (low == 0)); } Int128 operator+(const Int128& b) const { #ifdef USE_X86_64_ASM Int128 result; __asm__("addq %[bl], %[rl]\n\t" "adcq %[bh], %[rh]\n\t" : [rl] "=r"(result.low), [rh] "=r"(result.high) : "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high) : "cc"); return result; #else uint64_t lo = low + b.low; return Int128(lo, high + b.high + (lo < low)); #endif } Int128 operator-(const Int128& b) const { #ifdef USE_X86_64_ASM Int128 result; __asm__("subq %[bl], %[rl]\n\t" "sbbq %[bh], %[rh]\n\t" : [rl] "=r"(result.low), [rh] "=r"(result.high) : "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high) : "cc"); return result; #else return *this + -b; #endif } Int128& operator+=(const Int128& b) { #ifdef USE_X86_64_ASM __asm__("addq %[bl], %[rl]\n\t" "adcq %[bh], %[rh]\n\t" : [rl] "=r"(low), [rh] "=r"(high) : "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high) : "cc"); #else uint64_t lo = low + b.low; if (lo < low) { ++high; } low = lo; high += b.high; #endif return *this; } Int128& operator++() { if (++low == 0) { ++high; } return *this; } Int128 operator*(int64_t b) const; btScalar toScalar() const { return ((int64_t)high >= 0) ? btScalar(high) * (btScalar(0x100000000LL) * btScalar(0x100000000LL)) + btScalar(low) : -(-*this).toScalar(); } int32_t getSign() const { return ((int64_t)high < 0) ? -1 : (high || low) ? 1 : 0; } bool operator<(const Int128& b) const { return (high < b.high) || ((high == b.high) && (low < b.low)); } int32_t ucmp(const Int128& b) const { if (high < b.high) { return -1; } if (high > b.high) { return 1; } if (low < b.low) { return -1; } if (low > b.low) { return 1; } return 0; } }; class Rational64 { private: uint64_t m_numerator; uint64_t m_denominator; int32_t sign; public: Rational64(int64_t numerator, int64_t denominator) { if (numerator > 0) { sign = 1; m_numerator = (uint64_t)numerator; } else if (numerator < 0) { sign = -1; m_numerator = (uint64_t)-numerator; } else { sign = 0; m_numerator = 0; } if (denominator > 0) { m_denominator = (uint64_t)denominator; } else if (denominator < 0) { sign = -sign; m_denominator = (uint64_t)-denominator; } else { m_denominator = 0; } } bool isNegativeInfinity() const { return (sign < 0) && (m_denominator == 0); } bool isNaN() const { return (sign == 0) && (m_denominator == 0); } int32_t compare(const Rational64& b) const; btScalar toScalar() const { return sign * ((m_denominator == 0) ? SIMD_INFINITY : (btScalar)m_numerator / m_denominator); } }; class Rational128 { private: Int128 numerator; Int128 denominator; int32_t sign; bool isInt64; public: Rational128(int64_t value) { if (value > 0) { sign = 1; this->numerator = value; } else if (value < 0) { sign = -1; this->numerator = -value; } else { sign = 0; this->numerator = (uint64_t)0; } this->denominator = (uint64_t)1; isInt64 = true; } Rational128(const Int128& numerator, const Int128& denominator) { sign = numerator.getSign(); if (sign >= 0) { this->numerator = numerator; } else { this->numerator = -numerator; } int32_t dsign = denominator.getSign(); if (dsign >= 0) { this->denominator = denominator; } else { sign = -sign; this->denominator = -denominator; } isInt64 = false; } int32_t compare(const Rational128& b) const; int32_t compare(int64_t b) const; btScalar toScalar() const { return sign * ((denominator.getSign() == 0) ? SIMD_INFINITY : numerator.toScalar() / denominator.toScalar()); } }; class PointR128 { public: Int128 x; Int128 y; Int128 z; Int128 denominator; PointR128() { } PointR128(Int128 x, Int128 y, Int128 z, Int128 denominator) : x(x) , y(y) , z(z) , denominator(denominator) { } btScalar xvalue() const { return x.toScalar() / denominator.toScalar(); } btScalar yvalue() const { return y.toScalar() / denominator.toScalar(); } btScalar zvalue() const { return z.toScalar() / denominator.toScalar(); } }; class Edge; class Face; class Vertex { public: Vertex* next; Vertex* prev; Edge* edges; Face* firstNearbyFace; Face* lastNearbyFace; PointR128 point128; Point32 point; int32_t copy; Vertex() : next(NULL) , prev(NULL) , edges(NULL) , firstNearbyFace(NULL) , lastNearbyFace(NULL) , copy(-1) { } #ifdef DEBUG_CONVEX_HULL void print() { printf("V%d (%d, %d, %d)", point.index, point.x, point.y, point.z); } void printGraph(); #endif Point32 operator-(const Vertex& b) const { return point - b.point; } Rational128 dot(const Point64& b) const { return (point.index >= 0) ? Rational128(point.dot(b)) : Rational128(point128.x * b.x + point128.y * b.y + point128.z * b.z, point128.denominator); } btScalar xvalue() const { return (point.index >= 0) ? btScalar(point.x) : point128.xvalue(); } btScalar yvalue() const { return (point.index >= 0) ? btScalar(point.y) : point128.yvalue(); } btScalar zvalue() const { return (point.index >= 0) ? btScalar(point.z) : point128.zvalue(); } void receiveNearbyFaces(Vertex* src) { if (lastNearbyFace) { lastNearbyFace->nextWithSameNearbyVertex = src->firstNearbyFace; } else { firstNearbyFace = src->firstNearbyFace; } if (src->lastNearbyFace) { lastNearbyFace = src->lastNearbyFace; } for (Face* f = src->firstNearbyFace; f; f = f->nextWithSameNearbyVertex) { btAssert(f->nearbyVertex == src); f->nearbyVertex = this; } src->firstNearbyFace = NULL; src->lastNearbyFace = NULL; } }; class Edge { public: Edge* next; Edge* prev; Edge* reverse; Vertex* target; Face* face; int32_t copy; ~Edge() { next = NULL; prev = NULL; reverse = NULL; target = NULL; face = NULL; } void link(Edge* n) { btAssert(reverse->target == n->reverse->target); next = n; n->prev = this; } #ifdef DEBUG_CONVEX_HULL void print() { printf("E%p : %d -> %d, n=%p p=%p (0 %d\t%d\t%d) -> (%d %d %d)", this, reverse->target->point.index, target->point.index, next, prev, reverse->target->point.x, reverse->target->point.y, reverse->target->point.z, target->point.x, target->point.y, target->point.z); } #endif }; class Face { public: Face* next; Vertex* nearbyVertex; Face* nextWithSameNearbyVertex; Point32 origin; Point32 dir0; Point32 dir1; Face() : next(NULL) , nearbyVertex(NULL) , nextWithSameNearbyVertex(NULL) { } void init(Vertex* a, Vertex* b, Vertex* c) { nearbyVertex = a; origin = a->point; dir0 = *b - *a; dir1 = *c - *a; if (a->lastNearbyFace) { a->lastNearbyFace->nextWithSameNearbyVertex = this; } else { a->firstNearbyFace = this; } a->lastNearbyFace = this; } Point64 getNormal() { return dir0.cross(dir1); } }; template <typename UWord, typename UHWord> class DMul { private: static uint32_t high(uint64_t value) { return (uint32_t)(value >> 32); } static uint32_t low(uint64_t value) { return (uint32_t)value; } static uint64_t mul(uint32_t a, uint32_t b) { return (uint64_t)a * (uint64_t)b; } static void shlHalf(uint64_t& value) { value <<= 32; } static uint64_t high(Int128 value) { return value.high; } static uint64_t low(Int128 value) { return value.low; } static Int128 mul(uint64_t a, uint64_t b) { return Int128::mul(a, b); } static void shlHalf(Int128& value) { value.high = value.low; value.low = 0; } public: static void mul(UWord a, UWord b, UWord& resLow, UWord& resHigh) { UWord p00 = mul(low(a), low(b)); UWord p01 = mul(low(a), high(b)); UWord p10 = mul(high(a), low(b)); UWord p11 = mul(high(a), high(b)); UWord p0110 = UWord(low(p01)) + UWord(low(p10)); p11 += high(p01); p11 += high(p10); p11 += high(p0110); shlHalf(p0110); p00 += p0110; if (p00 < p0110) { ++p11; } resLow = p00; resHigh = p11; } }; private: class IntermediateHull { public: Vertex* minXy; Vertex* maxXy; Vertex* minYx; Vertex* maxYx; IntermediateHull() : minXy(NULL) , maxXy(NULL) , minYx(NULL) , maxYx(NULL) { } void print(); }; enum Orientation { NONE, CLOCKWISE, COUNTER_CLOCKWISE }; template <typename T> class PoolArray { private: T* array; int32_t size; public: PoolArray<T>* next; PoolArray(int32_t size) : size(size) , next(NULL) { array = (T*)btAlignedAlloc(sizeof(T) * size, 16); } ~PoolArray() { btAlignedFree(array); } T* init() { T* o = array; for (int32_t i = 0; i < size; i++, o++) { o->next = (i + 1 < size) ? o + 1 : NULL; } return array; } }; template <typename T> class Pool { private: PoolArray<T>* arrays; PoolArray<T>* nextArray; T* freeObjects; int32_t arraySize; public: Pool() : arrays(NULL) , nextArray(NULL) , freeObjects(NULL) , arraySize(256) { } ~Pool() { while (arrays) { PoolArray<T>* p = arrays; arrays = p->next; p->~PoolArray<T>(); btAlignedFree(p); } } void reset() { nextArray = arrays; freeObjects = NULL; } void setArraySize(int32_t arraySize) { this->arraySize = arraySize; } T* newObject() { T* o = freeObjects; if (!o) { PoolArray<T>* p = nextArray; if (p) { nextArray = p->next; } else { p = new (btAlignedAlloc(sizeof(PoolArray<T>), 16)) PoolArray<T>(arraySize); p->next = arrays; arrays = p; } o = p->init(); } freeObjects = o->next; return new (o) T(); }; void freeObject(T* object) { object->~T(); object->next = freeObjects; freeObjects = object; } }; btVector3 scaling; btVector3 center; Pool<Vertex> vertexPool; Pool<Edge> edgePool; Pool<Face> facePool; btAlignedObjectArray<Vertex*> originalVertices; int32_t mergeStamp; int32_t minAxis; int32_t medAxis; int32_t maxAxis; int32_t usedEdgePairs; int32_t maxUsedEdgePairs; static Orientation getOrientation(const Edge* prev, const Edge* next, const Point32& s, const Point32& t); Edge* findMaxAngle(bool ccw, const Vertex* start, const Point32& s, const Point64& rxs, const Point64& sxrxs, Rational64& minCot); void findEdgeForCoplanarFaces(Vertex* c0, Vertex* c1, Edge*& e0, Edge*& e1, Vertex* stop0, Vertex* stop1); Edge* newEdgePair(Vertex* from, Vertex* to); void removeEdgePair(Edge* edge) { Edge* n = edge->next; Edge* r = edge->reverse; btAssert(edge->target && r->target); if (n != edge) { n->prev = edge->prev; edge->prev->next = n; r->target->edges = n; } else { r->target->edges = NULL; } n = r->next; if (n != r) { n->prev = r->prev; r->prev->next = n; edge->target->edges = n; } else { edge->target->edges = NULL; } edgePool.freeObject(edge); edgePool.freeObject(r); usedEdgePairs--; } void computeInternal(int32_t start, int32_t end, IntermediateHull& result); bool mergeProjection(IntermediateHull& h0, IntermediateHull& h1, Vertex*& c0, Vertex*& c1); void merge(IntermediateHull& h0, IntermediateHull& h1); btVector3 toBtVector(const Point32& v); btVector3 getBtNormal(Face* face); bool shiftFace(Face* face, btScalar amount, btAlignedObjectArray<Vertex*> stack); public: Vertex* vertexList; void compute(const void* coords, bool doubleCoords, int32_t stride, int32_t count); btVector3 getCoordinates(const Vertex* v); btScalar shrink(btScalar amount, btScalar clampAmount); }; btConvexHullInternal::Int128 btConvexHullInternal::Int128::operator*(int64_t b) const { bool negative = (int64_t)high < 0; Int128 a = negative ? -*this : *this; if (b < 0) { negative = !negative; b = -b; } Int128 result = mul(a.low, (uint64_t)b); result.high += a.high * (uint64_t)b; return negative ? -result : result; } btConvexHullInternal::Int128 btConvexHullInternal::Int128::mul(int64_t a, int64_t b) { Int128 result; #ifdef USE_X86_64_ASM __asm__("imulq %[b]" : "=a"(result.low), "=d"(result.high) : "0"(a), [b] "r"(b) : "cc"); return result; #else bool negative = a < 0; if (negative) { a = -a; } if (b < 0) { negative = !negative; b = -b; } DMul<uint64_t, uint32_t>::mul((uint64_t)a, (uint64_t)b, result.low, result.high); return negative ? -result : result; #endif } btConvexHullInternal::Int128 btConvexHullInternal::Int128::mul(uint64_t a, uint64_t b) { Int128 result; #ifdef USE_X86_64_ASM __asm__("mulq %[b]" : "=a"(result.low), "=d"(result.high) : "0"(a), [b] "r"(b) : "cc"); #else DMul<uint64_t, uint32_t>::mul(a, b, result.low, result.high); #endif return result; } int32_t btConvexHullInternal::Rational64::compare(const Rational64& b) const { if (sign != b.sign) { return sign - b.sign; } else if (sign == 0) { return 0; } // return (numerator * b.denominator > b.numerator * denominator) ? sign : (numerator * b.denominator < b.numerator * denominator) ? -sign : 0; #ifdef USE_X86_64_ASM int32_t result; int64_t tmp; int64_t dummy; __asm__("mulq %[bn]\n\t" "movq %%rax, %[tmp]\n\t" "movq %%rdx, %%rbx\n\t" "movq %[tn], %%rax\n\t" "mulq %[bd]\n\t" "subq %[tmp], %%rax\n\t" "sbbq %%rbx, %%rdx\n\t" // rdx:rax contains 128-bit-difference "numerator*b.denominator - b.numerator*denominator" "setnsb %%bh\n\t" // bh=1 if difference is non-negative, bh=0 otherwise "orq %%rdx, %%rax\n\t" "setnzb %%bl\n\t" // bl=1 if difference if non-zero, bl=0 if it is zero "decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference) "shll $16, %%ebx\n\t" // ebx has same sign as difference : "=&b"(result), [tmp] "=&r"(tmp), "=a"(dummy) : "a"(denominator), [bn] "g"(b.numerator), [tn] "g"(numerator), [bd] "g"(b.denominator) : "%rdx", "cc"); return result ? result ^ sign // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero) // if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero) : 0; #else return sign * Int128::mul(m_numerator, b.m_denominator).ucmp(Int128::mul(m_denominator, b.m_numerator)); #endif } int32_t btConvexHullInternal::Rational128::compare(const Rational128& b) const { if (sign != b.sign) { return sign - b.sign; } else if (sign == 0) { return 0; } if (isInt64) { return -b.compare(sign * (int64_t)numerator.low); } Int128 nbdLow, nbdHigh, dbnLow, dbnHigh; DMul<Int128, uint64_t>::mul(numerator, b.denominator, nbdLow, nbdHigh); DMul<Int128, uint64_t>::mul(denominator, b.numerator, dbnLow, dbnHigh); int32_t cmp = nbdHigh.ucmp(dbnHigh); if (cmp) { return cmp * sign; } return nbdLow.ucmp(dbnLow) * sign; } int32_t btConvexHullInternal::Rational128::compare(int64_t b) const { if (isInt64) { int64_t a = sign * (int64_t)numerator.low; return (a > b) ? 1 : (a < b) ? -1 : 0; } if (b > 0) { if (sign <= 0) { return -1; } } else if (b < 0) { if (sign >= 0) { return 1; } b = -b; } else { return sign; } return numerator.ucmp(denominator * b) * sign; } btConvexHullInternal::Edge* btConvexHullInternal::newEdgePair(Vertex* from, Vertex* to) { btAssert(from && to); Edge* e = edgePool.newObject(); Edge* r = edgePool.newObject(); e->reverse = r; r->reverse = e; e->copy = mergeStamp; r->copy = mergeStamp; e->target = to; r->target = from; e->face = NULL; r->face = NULL; usedEdgePairs++; if (usedEdgePairs > maxUsedEdgePairs) { maxUsedEdgePairs = usedEdgePairs; } return e; } bool btConvexHullInternal::mergeProjection(IntermediateHull& h0, IntermediateHull& h1, Vertex*& c0, Vertex*& c1) { Vertex* v0 = h0.maxYx; Vertex* v1 = h1.minYx; if ((v0->point.x == v1->point.x) && (v0->point.y == v1->point.y)) { btAssert(v0->point.z < v1->point.z); Vertex* v1p = v1->prev; if (v1p == v1) { c0 = v0; if (v1->edges) { btAssert(v1->edges->next == v1->edges); v1 = v1->edges->target; btAssert(v1->edges->next == v1->edges); } c1 = v1; return false; } Vertex* v1n = v1->next; v1p->next = v1n; v1n->prev = v1p; if (v1 == h1.minXy) { if ((v1n->point.x < v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y < v1p->point.y))) { h1.minXy = v1n; } else { h1.minXy = v1p; } } if (v1 == h1.maxXy) { if ((v1n->point.x > v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y > v1p->point.y))) { h1.maxXy = v1n; } else { h1.maxXy = v1p; } } } v0 = h0.maxXy; v1 = h1.maxXy; Vertex* v00 = NULL; Vertex* v10 = NULL; int32_t sign = 1; for (int32_t side = 0; side <= 1; side++) { int32_t dx = (v1->point.x - v0->point.x) * sign; if (dx > 0) { while (true) { int32_t dy = v1->point.y - v0->point.y; Vertex* w0 = side ? v0->next : v0->prev; if (w0 != v0) { int32_t dx0 = (w0->point.x - v0->point.x) * sign; int32_t dy0 = w0->point.y - v0->point.y; if ((dy0 <= 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx <= dy * dx0)))) { v0 = w0; dx = (v1->point.x - v0->point.x) * sign; continue; } } Vertex* w1 = side ? v1->next : v1->prev; if (w1 != v1) { int32_t dx1 = (w1->point.x - v1->point.x) * sign; int32_t dy1 = w1->point.y - v1->point.y; int32_t dxn = (w1->point.x - v0->point.x) * sign; if ((dxn > 0) && (dy1 < 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx < dy * dx1)))) { v1 = w1; dx = dxn; continue; } } break; } } else if (dx < 0) { while (true) { int32_t dy = v1->point.y - v0->point.y; Vertex* w1 = side ? v1->prev : v1->next; if (w1 != v1) { int32_t dx1 = (w1->point.x - v1->point.x) * sign; int32_t dy1 = w1->point.y - v1->point.y; if ((dy1 >= 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx <= dy * dx1)))) { v1 = w1; dx = (v1->point.x - v0->point.x) * sign; continue; } } Vertex* w0 = side ? v0->prev : v0->next; if (w0 != v0) { int32_t dx0 = (w0->point.x - v0->point.x) * sign; int32_t dy0 = w0->point.y - v0->point.y; int32_t dxn = (v1->point.x - w0->point.x) * sign; if ((dxn < 0) && (dy0 > 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx < dy * dx0)))) { v0 = w0; dx = dxn; continue; } } break; } } else { int32_t x = v0->point.x; int32_t y0 = v0->point.y; Vertex* w0 = v0; Vertex* t; while (((t = side ? w0->next : w0->prev) != v0) && (t->point.x == x) && (t->point.y <= y0)) { w0 = t; y0 = t->point.y; } v0 = w0; int32_t y1 = v1->point.y; Vertex* w1 = v1; while (((t = side ? w1->prev : w1->next) != v1) && (t->point.x == x) && (t->point.y >= y1)) { w1 = t; y1 = t->point.y; } v1 = w1; } if (side == 0) { v00 = v0; v10 = v1; v0 = h0.minXy; v1 = h1.minXy; sign = -1; } } v0->prev = v1; v1->next = v0; v00->next = v10; v10->prev = v00; if (h1.minXy->point.x < h0.minXy->point.x) { h0.minXy = h1.minXy; } if (h1.maxXy->point.x >= h0.maxXy->point.x) { h0.maxXy = h1.maxXy; } h0.maxYx = h1.maxYx; c0 = v00; c1 = v10; return true; } void btConvexHullInternal::computeInternal(int32_t start, int32_t end, IntermediateHull& result) { int32_t n = end - start; switch (n) { case 0: result.minXy = NULL; result.maxXy = NULL; result.minYx = NULL; result.maxYx = NULL; return; case 2: { Vertex* v = originalVertices[start]; Vertex* w = v + 1; if (v->point != w->point) { int32_t dx = v->point.x - w->point.x; int32_t dy = v->point.y - w->point.y; if ((dx == 0) && (dy == 0)) { if (v->point.z > w->point.z) { Vertex* t = w; w = v; v = t; } btAssert(v->point.z < w->point.z); v->next = v; v->prev = v; result.minXy = v; result.maxXy = v; result.minYx = v; result.maxYx = v; } else { v->next = w; v->prev = w; w->next = v; w->prev = v; if ((dx < 0) || ((dx == 0) && (dy < 0))) { result.minXy = v; result.maxXy = w; } else { result.minXy = w; result.maxXy = v; } if ((dy < 0) || ((dy == 0) && (dx < 0))) { result.minYx = v; result.maxYx = w; } else { result.minYx = w; result.maxYx = v; } } Edge* e = newEdgePair(v, w); e->link(e); v->edges = e; e = e->reverse; e->link(e); w->edges = e; return; } } // lint -fallthrough case 1: { Vertex* v = originalVertices[start]; v->edges = NULL; v->next = v; v->prev = v; result.minXy = v; result.maxXy = v; result.minYx = v; result.maxYx = v; return; } } int32_t split0 = start + n / 2; Point32 p = originalVertices[split0 - 1]->point; int32_t split1 = split0; while ((split1 < end) && (originalVertices[split1]->point == p)) { split1++; } computeInternal(start, split0, result); IntermediateHull hull1; computeInternal(split1, end, hull1); #ifdef DEBUG_CONVEX_HULL printf("\n\nMerge\n"); result.print(); hull1.print(); #endif merge(result, hull1); #ifdef DEBUG_CONVEX_HULL printf("\n Result\n"); result.print(); #endif } #ifdef DEBUG_CONVEX_HULL void btConvexHullInternal::IntermediateHull::print() { printf(" Hull\n"); for (Vertex* v = minXy; v;) { printf(" "); v->print(); if (v == maxXy) { printf(" maxXy"); } if (v == minYx) { printf(" minYx"); } if (v == maxYx) { printf(" maxYx"); } if (v->next->prev != v) { printf(" Inconsistency"); } printf("\n"); v = v->next; if (v == minXy) { break; } } if (minXy) { minXy->copy = (minXy->copy == -1) ? -2 : -1; minXy->printGraph(); } } void btConvexHullInternal::Vertex::printGraph() { print(); printf("\nEdges\n"); Edge* e = edges; if (e) { do { e->print(); printf("\n"); e = e->next; } while (e != edges); do { Vertex* v = e->target; if (v->copy != copy) { v->copy = copy; v->printGraph(); } e = e->next; } while (e != edges); } } #endif btConvexHullInternal::Orientation btConvexHullInternal::getOrientation(const Edge* prev, const Edge* next, const Point32& s, const Point32& t) { btAssert(prev->reverse->target == next->reverse->target); if (prev->next == next) { if (prev->prev == next) { Point64 n = t.cross(s); Point64 m = (*prev->target - *next->reverse->target).cross(*next->target - *next->reverse->target); btAssert(!m.isZero()); int64_t dot = n.dot(m); btAssert(dot != 0); return (dot > 0) ? COUNTER_CLOCKWISE : CLOCKWISE; } return COUNTER_CLOCKWISE; } else if (prev->prev == next) { return CLOCKWISE; } else { return NONE; } } btConvexHullInternal::Edge* btConvexHullInternal::findMaxAngle(bool ccw, const Vertex* start, const Point32& s, const Point64& rxs, const Point64& sxrxs, Rational64& minCot) { Edge* minEdge = NULL; #ifdef DEBUG_CONVEX_HULL printf("find max edge for %d\n", start->point.index); #endif Edge* e = start->edges; if (e) { do { if (e->copy > mergeStamp) { Point32 t = *e->target - *start; Rational64 cot(t.dot(sxrxs), t.dot(rxs)); #ifdef DEBUG_CONVEX_HULL printf(" Angle is %f (%d) for ", (float)btAtan(cot.toScalar()), (int32_t)cot.isNaN()); e->print(); #endif if (cot.isNaN()) { btAssert(ccw ? (t.dot(s) < 0) : (t.dot(s) > 0)); } else { int32_t cmp; if (minEdge == NULL) { minCot = cot; minEdge = e; } else if ((cmp = cot.compare(minCot)) < 0) { minCot = cot; minEdge = e; } else if ((cmp == 0) && (ccw == (getOrientation(minEdge, e, s, t) == COUNTER_CLOCKWISE))) { minEdge = e; } } #ifdef DEBUG_CONVEX_HULL printf("\n"); #endif } e = e->next; } while (e != start->edges); } return minEdge; } void btConvexHullInternal::findEdgeForCoplanarFaces(Vertex* c0, Vertex* c1, Edge*& e0, Edge*& e1, Vertex* stop0, Vertex* stop1) { Edge* start0 = e0; Edge* start1 = e1; Point32 et0 = start0 ? start0->target->point : c0->point; Point32 et1 = start1 ? start1->target->point : c1->point; Point32 s = c1->point - c0->point; Point64 normal = ((start0 ? start0 : start1)->target->point - c0->point).cross(s); int64_t dist = c0->point.dot(normal); btAssert(!start1 || (start1->target->point.dot(normal) == dist)); Point64 perp = s.cross(normal); btAssert(!perp.isZero()); #ifdef DEBUG_CONVEX_HULL printf(" Advancing %d %d (%p %p, %d %d)\n", c0->point.index, c1->point.index, start0, start1, start0 ? start0->target->point.index : -1, start1 ? start1->target->point.index : -1); #endif int64_t maxDot0 = et0.dot(perp); if (e0) { while (e0->target != stop0) { Edge* e = e0->reverse->prev; if (e->target->point.dot(normal) < dist) { break; } btAssert(e->target->point.dot(normal) == dist); if (e->copy == mergeStamp) { break; } int64_t dot = e->target->point.dot(perp); if (dot <= maxDot0) { break; } maxDot0 = dot; e0 = e; et0 = e->target->point; } } int64_t maxDot1 = et1.dot(perp); if (e1) { while (e1->target != stop1) { Edge* e = e1->reverse->next; if (e->target->point.dot(normal) < dist) { break; } btAssert(e->target->point.dot(normal) == dist); if (e->copy == mergeStamp) { break; } int64_t dot = e->target->point.dot(perp); if (dot <= maxDot1) { break; } maxDot1 = dot; e1 = e; et1 = e->target->point; } } #ifdef DEBUG_CONVEX_HULL printf(" Starting at %d %d\n", et0.index, et1.index); #endif int64_t dx = maxDot1 - maxDot0; if (dx > 0) { while (true) { int64_t dy = (et1 - et0).dot(s); if (e0 && (e0->target != stop0)) { Edge* f0 = e0->next->reverse; if (f0->copy > mergeStamp) { int64_t dx0 = (f0->target->point - et0).dot(perp); int64_t dy0 = (f0->target->point - et0).dot(s); if ((dx0 == 0) ? (dy0 < 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) >= 0))) { et0 = f0->target->point; dx = (et1 - et0).dot(perp); e0 = (e0 == start0) ? NULL : f0; continue; } } } if (e1 && (e1->target != stop1)) { Edge* f1 = e1->reverse->next; if (f1->copy > mergeStamp) { Point32 d1 = f1->target->point - et1; if (d1.dot(normal) == 0) { int64_t dx1 = d1.dot(perp); int64_t dy1 = d1.dot(s); int64_t dxn = (f1->target->point - et0).dot(perp); if ((dxn > 0) && ((dx1 == 0) ? (dy1 < 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) > 0)))) { e1 = f1; et1 = e1->target->point; dx = dxn; continue; } } else { btAssert((e1 == start1) && (d1.dot(normal) < 0)); } } } break; } } else if (dx < 0) { while (true) { int64_t dy = (et1 - et0).dot(s); if (e1 && (e1->target != stop1)) { Edge* f1 = e1->prev->reverse; if (f1->copy > mergeStamp) { int64_t dx1 = (f1->target->point - et1).dot(perp); int64_t dy1 = (f1->target->point - et1).dot(s); if ((dx1 == 0) ? (dy1 > 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) <= 0))) { et1 = f1->target->point; dx = (et1 - et0).dot(perp); e1 = (e1 == start1) ? NULL : f1; continue; } } } if (e0 && (e0->target != stop0)) { Edge* f0 = e0->reverse->prev; if (f0->copy > mergeStamp) { Point32 d0 = f0->target->point - et0; if (d0.dot(normal) == 0) { int64_t dx0 = d0.dot(perp); int64_t dy0 = d0.dot(s); int64_t dxn = (et1 - f0->target->point).dot(perp); if ((dxn < 0) && ((dx0 == 0) ? (dy0 > 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) < 0)))) { e0 = f0; et0 = e0->target->point; dx = dxn; continue; } } else { btAssert((e0 == start0) && (d0.dot(normal) < 0)); } } } break; } } #ifdef DEBUG_CONVEX_HULL printf(" Advanced edges to %d %d\n", et0.index, et1.index); #endif } void btConvexHullInternal::merge(IntermediateHull& h0, IntermediateHull& h1) { if (!h1.maxXy) { return; } if (!h0.maxXy) { h0 = h1; return; } mergeStamp--; Vertex* c0 = NULL; Edge* toPrev0 = NULL; Edge* firstNew0 = NULL; Edge* pendingHead0 = NULL; Edge* pendingTail0 = NULL; Vertex* c1 = NULL; Edge* toPrev1 = NULL; Edge* firstNew1 = NULL; Edge* pendingHead1 = NULL; Edge* pendingTail1 = NULL; Point32 prevPoint; if (mergeProjection(h0, h1, c0, c1)) { Point32 s = *c1 - *c0; Point64 normal = Point32(0, 0, -1).cross(s); Point64 t = s.cross(normal); btAssert(!t.isZero()); Edge* e = c0->edges; Edge* start0 = NULL; if (e) { do { int64_t dot = (*e->target - *c0).dot(normal); btAssert(dot <= 0); if ((dot == 0) && ((*e->target - *c0).dot(t) > 0)) { if (!start0 || (getOrientation(start0, e, s, Point32(0, 0, -1)) == CLOCKWISE)) { start0 = e; } } e = e->next; } while (e != c0->edges); } e = c1->edges; Edge* start1 = NULL; if (e) { do { int64_t dot = (*e->target - *c1).dot(normal); btAssert(dot <= 0); if ((dot == 0) && ((*e->target - *c1).dot(t) > 0)) { if (!start1 || (getOrientation(start1, e, s, Point32(0, 0, -1)) == COUNTER_CLOCKWISE)) { start1 = e; } } e = e->next; } while (e != c1->edges); } if (start0 || start1) { findEdgeForCoplanarFaces(c0, c1, start0, start1, NULL, NULL); if (start0) { c0 = start0->target; } if (start1) { c1 = start1->target; } } prevPoint = c1->point; prevPoint.z++; } else { prevPoint = c1->point; prevPoint.x++; } Vertex* first0 = c0; Vertex* first1 = c1; bool firstRun = true; while (true) { Point32 s = *c1 - *c0; Point32 r = prevPoint - c0->point; Point64 rxs = r.cross(s); Point64 sxrxs = s.cross(rxs); #ifdef DEBUG_CONVEX_HULL printf("\n Checking %d %d\n", c0->point.index, c1->point.index); #endif Rational64 minCot0(0, 0); Edge* min0 = findMaxAngle(false, c0, s, rxs, sxrxs, minCot0); Rational64 minCot1(0, 0); Edge* min1 = findMaxAngle(true, c1, s, rxs, sxrxs, minCot1); if (!min0 && !min1) { Edge* e = newEdgePair(c0, c1); e->link(e); c0->edges = e; e = e->reverse; e->link(e); c1->edges = e; return; } else { int32_t cmp = !min0 ? 1 : !min1 ? -1 : minCot0.compare(minCot1); #ifdef DEBUG_CONVEX_HULL printf(" -> Result %d\n", cmp); #endif if (firstRun || ((cmp >= 0) ? !minCot1.isNegativeInfinity() : !minCot0.isNegativeInfinity())) { Edge* e = newEdgePair(c0, c1); if (pendingTail0) { pendingTail0->prev = e; } else { pendingHead0 = e; } e->next = pendingTail0; pendingTail0 = e; e = e->reverse; if (pendingTail1) { pendingTail1->next = e; } else { pendingHead1 = e; } e->prev = pendingTail1; pendingTail1 = e; } Edge* e0 = min0; Edge* e1 = min1; #ifdef DEBUG_CONVEX_HULL printf(" Found min edges to %d %d\n", e0 ? e0->target->point.index : -1, e1 ? e1->target->point.index : -1); #endif if (cmp == 0) { findEdgeForCoplanarFaces(c0, c1, e0, e1, NULL, NULL); } if ((cmp >= 0) && e1) { if (toPrev1) { for (Edge *e = toPrev1->next, *n = NULL; e != min1; e = n) { n = e->next; removeEdgePair(e); } } if (pendingTail1) { if (toPrev1) { toPrev1->link(pendingHead1); } else { min1->prev->link(pendingHead1); firstNew1 = pendingHead1; } pendingTail1->link(min1); pendingHead1 = NULL; pendingTail1 = NULL; } else if (!toPrev1) { firstNew1 = min1; } prevPoint = c1->point; c1 = e1->target; toPrev1 = e1->reverse; } if ((cmp <= 0) && e0) { if (toPrev0) { for (Edge *e = toPrev0->prev, *n = NULL; e != min0; e = n) { n = e->prev; removeEdgePair(e); } } if (pendingTail0) { if (toPrev0) { pendingHead0->link(toPrev0); } else { pendingHead0->link(min0->next); firstNew0 = pendingHead0; } min0->link(pendingTail0); pendingHead0 = NULL; pendingTail0 = NULL; } else if (!toPrev0) { firstNew0 = min0; } prevPoint = c0->point; c0 = e0->target; toPrev0 = e0->reverse; } } if ((c0 == first0) && (c1 == first1)) { if (toPrev0 == NULL) { pendingHead0->link(pendingTail0); c0->edges = pendingTail0; } else { for (Edge *e = toPrev0->prev, *n = NULL; e != firstNew0; e = n) { n = e->prev; removeEdgePair(e); } if (pendingTail0) { pendingHead0->link(toPrev0); firstNew0->link(pendingTail0); } } if (toPrev1 == NULL) { pendingTail1->link(pendingHead1); c1->edges = pendingTail1; } else { for (Edge *e = toPrev1->next, *n = NULL; e != firstNew1; e = n) { n = e->next; removeEdgePair(e); } if (pendingTail1) { toPrev1->link(pendingHead1); pendingTail1->link(firstNew1); } } return; } firstRun = false; } } static bool pointCmp(const btConvexHullInternal::Point32& p, const btConvexHullInternal::Point32& q) { return (p.y < q.y) || ((p.y == q.y) && ((p.x < q.x) || ((p.x == q.x) && (p.z < q.z)))); } void btConvexHullInternal::compute(const void* coords, bool doubleCoords, int32_t stride, int32_t count) { btVector3 min(btScalar(1e30), btScalar(1e30), btScalar(1e30)), max(btScalar(-1e30), btScalar(-1e30), btScalar(-1e30)); const char* ptr = (const char*)coords; if (doubleCoords) { for (int32_t i = 0; i < count; i++) { const double* v = (const double*)ptr; btVector3 p((btScalar)v[0], (btScalar)v[1], (btScalar)v[2]); ptr += stride; min.setMin(p); max.setMax(p); } } else { for (int32_t i = 0; i < count; i++) { const float* v = (const float*)ptr; btVector3 p(v[0], v[1], v[2]); ptr += stride; min.setMin(p); max.setMax(p); } } btVector3 s = max - min; maxAxis = s.maxAxis(); minAxis = s.minAxis(); if (minAxis == maxAxis) { minAxis = (maxAxis + 1) % 3; } medAxis = 3 - maxAxis - minAxis; s /= btScalar(10216); if (((medAxis + 1) % 3) != maxAxis) { s *= -1; } scaling = s; if (s[0] != 0) { s[0] = btScalar(1) / s[0]; } if (s[1] != 0) { s[1] = btScalar(1) / s[1]; } if (s[2] != 0) { s[2] = btScalar(1) / s[2]; } center = (min + max) * btScalar(0.5); btAlignedObjectArray<Point32> points; points.resize(count); ptr = (const char*)coords; if (doubleCoords) { for (int32_t i = 0; i < count; i++) { const double* v = (const double*)ptr; btVector3 p((btScalar)v[0], (btScalar)v[1], (btScalar)v[2]); ptr += stride; p = (p - center) * s; points[i].x = (int32_t)p[medAxis]; points[i].y = (int32_t)p[maxAxis]; points[i].z = (int32_t)p[minAxis]; points[i].index = i; } } else { for (int32_t i = 0; i < count; i++) { const float* v = (const float*)ptr; btVector3 p(v[0], v[1], v[2]); ptr += stride; p = (p - center) * s; points[i].x = (int32_t)p[medAxis]; points[i].y = (int32_t)p[maxAxis]; points[i].z = (int32_t)p[minAxis]; points[i].index = i; } } points.quickSort(pointCmp); vertexPool.reset(); vertexPool.setArraySize(count); originalVertices.resize(count); for (int32_t i = 0; i < count; i++) { Vertex* v = vertexPool.newObject(); v->edges = NULL; v->point = points[i]; v->copy = -1; originalVertices[i] = v; } points.clear(); edgePool.reset(); edgePool.setArraySize(6 * count); usedEdgePairs = 0; maxUsedEdgePairs = 0; mergeStamp = -3; IntermediateHull hull; computeInternal(0, count, hull); vertexList = hull.minXy; #ifdef DEBUG_CONVEX_HULL printf("max. edges %d (3v = %d)", maxUsedEdgePairs, 3 * count); #endif } btVector3 btConvexHullInternal::toBtVector(const Point32& v) { btVector3 p; p[medAxis] = btScalar(v.x); p[maxAxis] = btScalar(v.y); p[minAxis] = btScalar(v.z); return p * scaling; } btVector3 btConvexHullInternal::getBtNormal(Face* face) { return toBtVector(face->dir0).cross(toBtVector(face->dir1)).normalized(); } btVector3 btConvexHullInternal::getCoordinates(const Vertex* v) { btVector3 p; p[medAxis] = v->xvalue(); p[maxAxis] = v->yvalue(); p[minAxis] = v->zvalue(); return p * scaling + center; } btScalar btConvexHullInternal::shrink(btScalar amount, btScalar clampAmount) { if (!vertexList) { return 0; } int32_t stamp = --mergeStamp; btAlignedObjectArray<Vertex*> stack; vertexList->copy = stamp; stack.push_back(vertexList); btAlignedObjectArray<Face*> faces; Point32 ref = vertexList->point; Int128 hullCenterX(0, 0); Int128 hullCenterY(0, 0); Int128 hullCenterZ(0, 0); Int128 volume(0, 0); while (stack.size() > 0) { Vertex* v = stack[stack.size() - 1]; stack.pop_back(); Edge* e = v->edges; if (e) { do { if (e->target->copy != stamp) { e->target->copy = stamp; stack.push_back(e->target); } if (e->copy != stamp) { Face* face = facePool.newObject(); face->init(e->target, e->reverse->prev->target, v); faces.push_back(face); Edge* f = e; Vertex* a = NULL; Vertex* b = NULL; do { if (a && b) { int64_t vol = (v->point - ref).dot((a->point - ref).cross(b->point - ref)); btAssert(vol >= 0); Point32 c = v->point + a->point + b->point + ref; hullCenterX += vol * c.x; hullCenterY += vol * c.y; hullCenterZ += vol * c.z; volume += vol; } btAssert(f->copy != stamp); f->copy = stamp; f->face = face; a = b; b = f->target; f = f->reverse->prev; } while (f != e); } e = e->next; } while (e != v->edges); } } if (volume.getSign() <= 0) { return 0; } btVector3 hullCenter; hullCenter[medAxis] = hullCenterX.toScalar(); hullCenter[maxAxis] = hullCenterY.toScalar(); hullCenter[minAxis] = hullCenterZ.toScalar(); hullCenter /= 4 * volume.toScalar(); hullCenter *= scaling; int32_t faceCount = faces.size(); if (clampAmount > 0) { btScalar minDist = SIMD_INFINITY; for (int32_t i = 0; i < faceCount; i++) { btVector3 normal = getBtNormal(faces[i]); btScalar dist = normal.dot(toBtVector(faces[i]->origin) - hullCenter); if (dist < minDist) { minDist = dist; } } if (minDist <= 0) { return 0; } amount = btMin(amount, minDist * clampAmount); } uint32_t seed = 243703; for (int32_t i = 0; i < faceCount; i++, seed = 1664525 * seed + 1013904223) { btSwap(faces[i], faces[seed % faceCount]); } for (int32_t i = 0; i < faceCount; i++) { if (!shiftFace(faces[i], amount, stack)) { return -amount; } } return amount; } bool btConvexHullInternal::shiftFace(Face* face, btScalar amount, btAlignedObjectArray<Vertex*> stack) { btVector3 origShift = getBtNormal(face) * -amount; if (scaling[0] != 0) { origShift[0] /= scaling[0]; } if (scaling[1] != 0) { origShift[1] /= scaling[1]; } if (scaling[2] != 0) { origShift[2] /= scaling[2]; } Point32 shift((int32_t)origShift[medAxis], (int32_t)origShift[maxAxis], (int32_t)origShift[minAxis]); if (shift.isZero()) { return true; } Point64 normal = face->getNormal(); #ifdef DEBUG_CONVEX_HULL printf("\nShrinking face (%d %d %d) (%d %d %d) (%d %d %d) by (%d %d %d)\n", face->origin.x, face->origin.y, face->origin.z, face->dir0.x, face->dir0.y, face->dir0.z, face->dir1.x, face->dir1.y, face->dir1.z, shift.x, shift.y, shift.z); #endif int64_t origDot = face->origin.dot(normal); Point32 shiftedOrigin = face->origin + shift; int64_t shiftedDot = shiftedOrigin.dot(normal); btAssert(shiftedDot <= origDot); if (shiftedDot >= origDot) { return false; } Edge* intersection = NULL; Edge* startEdge = face->nearbyVertex->edges; #ifdef DEBUG_CONVEX_HULL printf("Start edge is "); startEdge->print(); printf(", normal is (%lld %lld %lld), shifted dot is %lld\n", normal.x, normal.y, normal.z, shiftedDot); #endif Rational128 optDot = face->nearbyVertex->dot(normal); int32_t cmp = optDot.compare(shiftedDot); #ifdef SHOW_ITERATIONS int32_t n = 0; #endif if (cmp >= 0) { Edge* e = startEdge; do { #ifdef SHOW_ITERATIONS n++; #endif Rational128 dot = e->target->dot(normal); btAssert(dot.compare(origDot) <= 0); #ifdef DEBUG_CONVEX_HULL printf("Moving downwards, edge is "); e->print(); printf(", dot is %f (%f %lld)\n", (float)dot.toScalar(), (float)optDot.toScalar(), shiftedDot); #endif if (dot.compare(optDot) < 0) { int32_t c = dot.compare(shiftedDot); optDot = dot; e = e->reverse; startEdge = e; if (c < 0) { intersection = e; break; } cmp = c; } e = e->prev; } while (e != startEdge); if (!intersection) { return false; } } else { Edge* e = startEdge; do { #ifdef SHOW_ITERATIONS n++; #endif Rational128 dot = e->target->dot(normal); btAssert(dot.compare(origDot) <= 0); #ifdef DEBUG_CONVEX_HULL printf("Moving upwards, edge is "); e->print(); printf(", dot is %f (%f %lld)\n", (float)dot.toScalar(), (float)optDot.toScalar(), shiftedDot); #endif if (dot.compare(optDot) > 0) { cmp = dot.compare(shiftedDot); if (cmp >= 0) { intersection = e; break; } optDot = dot; e = e->reverse; startEdge = e; } e = e->prev; } while (e != startEdge); if (!intersection) { return true; } } #ifdef SHOW_ITERATIONS printf("Needed %d iterations to find initial intersection\n", n); #endif if (cmp == 0) { Edge* e = intersection->reverse->next; #ifdef SHOW_ITERATIONS n = 0; #endif while (e->target->dot(normal).compare(shiftedDot) <= 0) { #ifdef SHOW_ITERATIONS n++; #endif e = e->next; if (e == intersection->reverse) { return true; } #ifdef DEBUG_CONVEX_HULL printf("Checking for outwards edge, current edge is "); e->print(); printf("\n"); #endif } #ifdef SHOW_ITERATIONS printf("Needed %d iterations to check for complete containment\n", n); #endif } Edge* firstIntersection = NULL; Edge* faceEdge = NULL; Edge* firstFaceEdge = NULL; #ifdef SHOW_ITERATIONS int32_t m = 0; #endif while (true) { #ifdef SHOW_ITERATIONS m++; #endif #ifdef DEBUG_CONVEX_HULL printf("Intersecting edge is "); intersection->print(); printf("\n"); #endif if (cmp == 0) { Edge* e = intersection->reverse->next; startEdge = e; #ifdef SHOW_ITERATIONS n = 0; #endif while (true) { #ifdef SHOW_ITERATIONS n++; #endif if (e->target->dot(normal).compare(shiftedDot) >= 0) { break; } intersection = e->reverse; e = e->next; if (e == startEdge) { return true; } } #ifdef SHOW_ITERATIONS printf("Needed %d iterations to advance intersection\n", n); #endif } #ifdef DEBUG_CONVEX_HULL printf("Advanced intersecting edge to "); intersection->print(); printf(", cmp = %d\n", cmp); #endif if (!firstIntersection) { firstIntersection = intersection; } else if (intersection == firstIntersection) { break; } int32_t prevCmp = cmp; Edge* prevIntersection = intersection; Edge* prevFaceEdge = faceEdge; Edge* e = intersection->reverse; #ifdef SHOW_ITERATIONS n = 0; #endif while (true) { #ifdef SHOW_ITERATIONS n++; #endif e = e->reverse->prev; btAssert(e != intersection->reverse); cmp = e->target->dot(normal).compare(shiftedDot); #ifdef DEBUG_CONVEX_HULL printf("Testing edge "); e->print(); printf(" -> cmp = %d\n", cmp); #endif if (cmp >= 0) { intersection = e; break; } } #ifdef SHOW_ITERATIONS printf("Needed %d iterations to find other intersection of face\n", n); #endif if (cmp > 0) { Vertex* removed = intersection->target; e = intersection->reverse; if (e->prev == e) { removed->edges = NULL; } else { removed->edges = e->prev; e->prev->link(e->next); e->link(e); } #ifdef DEBUG_CONVEX_HULL printf("1: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z); #endif Point64 n0 = intersection->face->getNormal(); Point64 n1 = intersection->reverse->face->getNormal(); int64_t m00 = face->dir0.dot(n0); int64_t m01 = face->dir1.dot(n0); int64_t m10 = face->dir0.dot(n1); int64_t m11 = face->dir1.dot(n1); int64_t r0 = (intersection->face->origin - shiftedOrigin).dot(n0); int64_t r1 = (intersection->reverse->face->origin - shiftedOrigin).dot(n1); Int128 det = Int128::mul(m00, m11) - Int128::mul(m01, m10); btAssert(det.getSign() != 0); Vertex* v = vertexPool.newObject(); v->point.index = -1; v->copy = -1; v->point128 = PointR128(Int128::mul(face->dir0.x * r0, m11) - Int128::mul(face->dir0.x * r1, m01) + Int128::mul(face->dir1.x * r1, m00) - Int128::mul(face->dir1.x * r0, m10) + det * shiftedOrigin.x, Int128::mul(face->dir0.y * r0, m11) - Int128::mul(face->dir0.y * r1, m01) + Int128::mul(face->dir1.y * r1, m00) - Int128::mul(face->dir1.y * r0, m10) + det * shiftedOrigin.y, Int128::mul(face->dir0.z * r0, m11) - Int128::mul(face->dir0.z * r1, m01) + Int128::mul(face->dir1.z * r1, m00) - Int128::mul(face->dir1.z * r0, m10) + det * shiftedOrigin.z, det); v->point.x = (int32_t)v->point128.xvalue(); v->point.y = (int32_t)v->point128.yvalue(); v->point.z = (int32_t)v->point128.zvalue(); intersection->target = v; v->edges = e; stack.push_back(v); stack.push_back(removed); stack.push_back(NULL); } if (cmp || prevCmp || (prevIntersection->reverse->next->target != intersection->target)) { faceEdge = newEdgePair(prevIntersection->target, intersection->target); if (prevCmp == 0) { faceEdge->link(prevIntersection->reverse->next); } if ((prevCmp == 0) || prevFaceEdge) { prevIntersection->reverse->link(faceEdge); } if (cmp == 0) { intersection->reverse->prev->link(faceEdge->reverse); } faceEdge->reverse->link(intersection->reverse); } else { faceEdge = prevIntersection->reverse->next; } if (prevFaceEdge) { if (prevCmp > 0) { faceEdge->link(prevFaceEdge->reverse); } else if (faceEdge != prevFaceEdge->reverse) { stack.push_back(prevFaceEdge->target); while (faceEdge->next != prevFaceEdge->reverse) { Vertex* removed = faceEdge->next->target; removeEdgePair(faceEdge->next); stack.push_back(removed); #ifdef DEBUG_CONVEX_HULL printf("2: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z); #endif } stack.push_back(NULL); } } faceEdge->face = face; faceEdge->reverse->face = intersection->face; if (!firstFaceEdge) { firstFaceEdge = faceEdge; } } #ifdef SHOW_ITERATIONS printf("Needed %d iterations to process all intersections\n", m); #endif if (cmp > 0) { firstFaceEdge->reverse->target = faceEdge->target; firstIntersection->reverse->link(firstFaceEdge); firstFaceEdge->link(faceEdge->reverse); } else if (firstFaceEdge != faceEdge->reverse) { stack.push_back(faceEdge->target); while (firstFaceEdge->next != faceEdge->reverse) { Vertex* removed = firstFaceEdge->next->target; removeEdgePair(firstFaceEdge->next); stack.push_back(removed); #ifdef DEBUG_CONVEX_HULL printf("3: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z); #endif } stack.push_back(NULL); } btAssert(stack.size() > 0); vertexList = stack[0]; #ifdef DEBUG_CONVEX_HULL printf("Removing part\n"); #endif #ifdef SHOW_ITERATIONS n = 0; #endif int32_t pos = 0; while (pos < stack.size()) { int32_t end = stack.size(); while (pos < end) { Vertex* kept = stack[pos++]; #ifdef DEBUG_CONVEX_HULL kept->print(); #endif bool deeper = false; Vertex* removed; while ((removed = stack[pos++]) != NULL) { #ifdef SHOW_ITERATIONS n++; #endif kept->receiveNearbyFaces(removed); while (removed->edges) { if (!deeper) { deeper = true; stack.push_back(kept); } stack.push_back(removed->edges->target); removeEdgePair(removed->edges); } } if (deeper) { stack.push_back(NULL); } } } #ifdef SHOW_ITERATIONS printf("Needed %d iterations to remove part\n", n); #endif stack.resize(0); face->origin = shiftedOrigin; return true; } static int32_t getVertexCopy(btConvexHullInternal::Vertex* vertex, btAlignedObjectArray<btConvexHullInternal::Vertex*>& vertices) { int32_t index = vertex->copy; if (index < 0) { index = vertices.size(); vertex->copy = index; vertices.push_back(vertex); #ifdef DEBUG_CONVEX_HULL printf("Vertex %d gets index *%d\n", vertex->point.index, index); #endif } return index; } btScalar btConvexHullComputer::compute(const void* coords, bool doubleCoords, int32_t stride, int32_t count, btScalar shrink, btScalar shrinkClamp) { if (count <= 0) { vertices.clear(); edges.clear(); faces.clear(); return 0; } btConvexHullInternal hull; hull.compute(coords, doubleCoords, stride, count); btScalar shift = 0; if ((shrink > 0) && ((shift = hull.shrink(shrink, shrinkClamp)) < 0)) { vertices.clear(); edges.clear(); faces.clear(); return shift; } vertices.resize(0); edges.resize(0); faces.resize(0); btAlignedObjectArray<btConvexHullInternal::Vertex*> oldVertices; getVertexCopy(hull.vertexList, oldVertices); int32_t copied = 0; while (copied < oldVertices.size()) { btConvexHullInternal::Vertex* v = oldVertices[copied]; vertices.push_back(hull.getCoordinates(v)); btConvexHullInternal::Edge* firstEdge = v->edges; if (firstEdge) { int32_t firstCopy = -1; int32_t prevCopy = -1; btConvexHullInternal::Edge* e = firstEdge; do { if (e->copy < 0) { int32_t s = edges.size(); edges.push_back(Edge()); edges.push_back(Edge()); Edge* c = &edges[s]; Edge* r = &edges[s + 1]; e->copy = s; e->reverse->copy = s + 1; c->reverse = 1; r->reverse = -1; c->targetVertex = getVertexCopy(e->target, oldVertices); r->targetVertex = copied; #ifdef DEBUG_CONVEX_HULL printf(" CREATE: Vertex *%d has edge to *%d\n", copied, c->getTargetVertex()); #endif } if (prevCopy >= 0) { edges[e->copy].next = prevCopy - e->copy; } else { firstCopy = e->copy; } prevCopy = e->copy; e = e->next; } while (e != firstEdge); edges[firstCopy].next = prevCopy - firstCopy; } copied++; } for (int32_t i = 0; i < copied; i++) { btConvexHullInternal::Vertex* v = oldVertices[i]; btConvexHullInternal::Edge* firstEdge = v->edges; if (firstEdge) { btConvexHullInternal::Edge* e = firstEdge; do { if (e->copy >= 0) { #ifdef DEBUG_CONVEX_HULL printf("Vertex *%d has edge to *%d\n", i, edges[e->copy].getTargetVertex()); #endif faces.push_back(e->copy); btConvexHullInternal::Edge* f = e; do { #ifdef DEBUG_CONVEX_HULL printf(" Face *%d\n", edges[f->copy].getTargetVertex()); #endif f->copy = -1; f = f->reverse->prev; } while (f != e); } e = e->next; } while (e != firstEdge); } } return shift; } // -- GODOT start -- }; // namespace VHACD // -- GODOT end --