/* * Copyright (c) 2020 - 2022 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * Copyright notice for the EFL: * Copyright (C) EFL developers (see AUTHORS) * All rights reserved. * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _USE_MATH_DEFINES //Math Constants are not defined in Standard C/C++. #include #include #include #include #include "tvgSvgLoaderCommon.h" #include "tvgSvgPath.h" #include "tvgSvgUtil.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ static char* _skipComma(const char* content) { while (*content && isspace(*content)) { content++; } if (*content == ',') return (char*)content + 1; return (char*)content; } static bool _parseNumber(char** content, float* number) { char* end = NULL; *number = svgUtilStrtof(*content, &end); //If the start of string is not number if ((*content) == end) return false; //Skip comma if any *content = _skipComma(end); return true; } static bool _parseFlag(char** content, int* number) { char* end = NULL; if (*(*content) != '0' && *(*content) != '1') return false; *number = *(*content) - '0'; *content += 1; end = *content; *content = _skipComma(end); return true; } void _pathAppendArcTo(Array* cmds, Array* pts, Point* cur, Point* curCtl, float x, float y, float rx, float ry, float angle, bool largeArc, bool sweep) { float cxp, cyp, cx, cy; float sx, sy; float cosPhi, sinPhi; float dx2, dy2; float x1p, y1p; float x1p2, y1p2; float rx2, ry2; float lambda; float c; float at; float theta1, deltaTheta; float nat; float delta, bcp; float cosPhiRx, cosPhiRy; float sinPhiRx, sinPhiRy; float cosTheta1, sinTheta1; int segments; //Some helpful stuff is available here: //http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes sx = cur->x; sy = cur->y; //If start and end points are identical, then no arc is drawn if ((fabsf(x - sx) < (1.0f / 256.0f)) && (fabsf(y - sy) < (1.0f / 256.0f))) return; //Correction of out-of-range radii, see F6.6.1 (step 2) rx = fabsf(rx); ry = fabsf(ry); angle = angle * M_PI / 180.0f; cosPhi = cosf(angle); sinPhi = sinf(angle); dx2 = (sx - x) / 2.0f; dy2 = (sy - y) / 2.0f; x1p = cosPhi * dx2 + sinPhi * dy2; y1p = cosPhi * dy2 - sinPhi * dx2; x1p2 = x1p * x1p; y1p2 = y1p * y1p; rx2 = rx * rx; ry2 = ry * ry; lambda = (x1p2 / rx2) + (y1p2 / ry2); //Correction of out-of-range radii, see F6.6.2 (step 4) if (lambda > 1.0f) { //See F6.6.3 float lambdaRoot = sqrtf(lambda); rx *= lambdaRoot; ry *= lambdaRoot; //Update rx2 and ry2 rx2 = rx * rx; ry2 = ry * ry; } c = (rx2 * ry2) - (rx2 * y1p2) - (ry2 * x1p2); //Check if there is no possible solution //(i.e. we can't do a square root of a negative value) if (c < 0.0f) { //Scale uniformly until we have a single solution //(see F6.2) i.e. when c == 0.0 float scale = sqrtf(1.0f - c / (rx2 * ry2)); rx *= scale; ry *= scale; //Update rx2 and ry2 rx2 = rx * rx; ry2 = ry * ry; //Step 2 (F6.5.2) - simplified since c == 0.0 cxp = 0.0f; cyp = 0.0f; //Step 3 (F6.5.3 first part) - simplified since cxp and cyp == 0.0 cx = 0.0f; cy = 0.0f; } else { //Complete c calculation c = sqrtf(c / ((rx2 * y1p2) + (ry2 * x1p2))); //Inverse sign if Fa == Fs if (largeArc == sweep) c = -c; //Step 2 (F6.5.2) cxp = c * (rx * y1p / ry); cyp = c * (-ry * x1p / rx); //Step 3 (F6.5.3 first part) cx = cosPhi * cxp - sinPhi * cyp; cy = sinPhi * cxp + cosPhi * cyp; } //Step 3 (F6.5.3 second part) we now have the center point of the ellipse cx += (sx + x) / 2.0f; cy += (sy + y) / 2.0f; //Sstep 4 (F6.5.4) //We dont' use arccos (as per w3c doc), see //http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm //Note: atan2 (0.0, 1.0) == 0.0 at = atan2(((y1p - cyp) / ry), ((x1p - cxp) / rx)); theta1 = (at < 0.0f) ? 2.0f * M_PI + at : at; nat = atan2(((-y1p - cyp) / ry), ((-x1p - cxp) / rx)); deltaTheta = (nat < at) ? 2.0f * M_PI - at + nat : nat - at; if (sweep) { //Ensure delta theta < 0 or else add 360 degrees if (deltaTheta < 0.0f) deltaTheta += (float)(2.0f * M_PI); } else { //Ensure delta theta > 0 or else substract 360 degrees if (deltaTheta > 0.0f) deltaTheta -= (float)(2.0f * M_PI); } //Add several cubic bezier to approximate the arc //(smaller than 90 degrees) //We add one extra segment because we want something //Smaller than 90deg (i.e. not 90 itself) segments = static_cast(fabsf(deltaTheta / float(M_PI_2)) + 1.0f); delta = deltaTheta / segments; //http://www.stillhq.com/ctpfaq/2001/comp.text.pdf-faq-2001-04.txt (section 2.13) bcp = 4.0f / 3.0f * (1.0f - cosf(delta / 2.0f)) / sinf(delta / 2.0f); cosPhiRx = cosPhi * rx; cosPhiRy = cosPhi * ry; sinPhiRx = sinPhi * rx; sinPhiRy = sinPhi * ry; cosTheta1 = cosf(theta1); sinTheta1 = sinf(theta1); for (int i = 0; i < segments; ++i) { //End angle (for this segment) = current + delta float c1x, c1y, ex, ey, c2x, c2y; float theta2 = theta1 + delta; float cosTheta2 = cosf(theta2); float sinTheta2 = sinf(theta2); Point p[3]; //First control point (based on start point sx,sy) c1x = sx - bcp * (cosPhiRx * sinTheta1 + sinPhiRy * cosTheta1); c1y = sy + bcp * (cosPhiRy * cosTheta1 - sinPhiRx * sinTheta1); //End point (for this segment) ex = cx + (cosPhiRx * cosTheta2 - sinPhiRy * sinTheta2); ey = cy + (sinPhiRx * cosTheta2 + cosPhiRy * sinTheta2); //Second control point (based on end point ex,ey) c2x = ex + bcp * (cosPhiRx * sinTheta2 + sinPhiRy * cosTheta2); c2y = ey + bcp * (sinPhiRx * sinTheta2 - cosPhiRy * cosTheta2); cmds->push(PathCommand::CubicTo); p[0] = {c1x, c1y}; p[1] = {c2x, c2y}; p[2] = {ex, ey}; pts->push(p[0]); pts->push(p[1]); pts->push(p[2]); *curCtl = p[1]; *cur = p[2]; //Next start point is the current end point (same for angle) sx = ex; sy = ey; theta1 = theta2; //Avoid recomputations cosTheta1 = cosTheta2; sinTheta1 = sinTheta2; } } static int _numberCount(char cmd) { int count = 0; switch (cmd) { case 'M': case 'm': case 'L': case 'l': case 'T': case 't': { count = 2; break; } case 'C': case 'c': case 'E': case 'e': { count = 6; break; } case 'H': case 'h': case 'V': case 'v': { count = 1; break; } case 'S': case 's': case 'Q': case 'q': { count = 4; break; } case 'A': case 'a': { count = 7; break; } default: break; } return count; } static bool _processCommand(Array* cmds, Array* pts, char cmd, float* arr, int count, Point* cur, Point* curCtl, Point* startPoint, bool *isQuadratic) { switch (cmd) { case 'm': case 'l': case 'c': case 's': case 'q': case 't': { for (int i = 0; i < count - 1; i += 2) { arr[i] = arr[i] + cur->x; arr[i + 1] = arr[i + 1] + cur->y; } break; } case 'h': { arr[0] = arr[0] + cur->x; break; } case 'v': { arr[0] = arr[0] + cur->y; break; } case 'a': { arr[5] = arr[5] + cur->x; arr[6] = arr[6] + cur->y; break; } default: { break; } } switch (cmd) { case 'm': case 'M': { Point p = {arr[0], arr[1]}; cmds->push(PathCommand::MoveTo); pts->push(p); *cur = {arr[0], arr[1]}; *startPoint = {arr[0], arr[1]}; break; } case 'l': case 'L': { Point p = {arr[0], arr[1]}; cmds->push(PathCommand::LineTo); pts->push(p); *cur = {arr[0], arr[1]}; break; } case 'c': case 'C': { Point p[3]; cmds->push(PathCommand::CubicTo); p[0] = {arr[0], arr[1]}; p[1] = {arr[2], arr[3]}; p[2] = {arr[4], arr[5]}; pts->push(p[0]); pts->push(p[1]); pts->push(p[2]); *curCtl = p[1]; *cur = p[2]; *isQuadratic = false; break; } case 's': case 'S': { Point p[3], ctrl; if ((cmds->count > 1) && (cmds->data[cmds->count - 1] == PathCommand::CubicTo) && !(*isQuadratic)) { ctrl.x = 2 * cur->x - curCtl->x; ctrl.y = 2 * cur->y - curCtl->y; } else { ctrl = *cur; } cmds->push(PathCommand::CubicTo); p[0] = ctrl; p[1] = {arr[0], arr[1]}; p[2] = {arr[2], arr[3]}; pts->push(p[0]); pts->push(p[1]); pts->push(p[2]); *curCtl = p[1]; *cur = p[2]; *isQuadratic = false; break; } case 'q': case 'Q': { Point p[3]; float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0); float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0); float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0); float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0); cmds->push(PathCommand::CubicTo); p[0] = {ctrl_x0, ctrl_y0}; p[1] = {ctrl_x1, ctrl_y1}; p[2] = {arr[2], arr[3]}; pts->push(p[0]); pts->push(p[1]); pts->push(p[2]); *curCtl = {arr[0], arr[1]}; *cur = p[2]; *isQuadratic = true; break; } case 't': case 'T': { Point p[3], ctrl; if ((cmds->count > 1) && (cmds->data[cmds->count - 1] == PathCommand::CubicTo) && *isQuadratic) { ctrl.x = 2 * cur->x - curCtl->x; ctrl.y = 2 * cur->y - curCtl->y; } else { ctrl = *cur; } float ctrl_x0 = (cur->x + 2 * ctrl.x) * (1.0 / 3.0); float ctrl_y0 = (cur->y + 2 * ctrl.y) * (1.0 / 3.0); float ctrl_x1 = (arr[0] + 2 * ctrl.x) * (1.0 / 3.0); float ctrl_y1 = (arr[1] + 2 * ctrl.y) * (1.0 / 3.0); cmds->push(PathCommand::CubicTo); p[0] = {ctrl_x0, ctrl_y0}; p[1] = {ctrl_x1, ctrl_y1}; p[2] = {arr[0], arr[1]}; pts->push(p[0]); pts->push(p[1]); pts->push(p[2]); *curCtl = {ctrl.x, ctrl.y}; *cur = p[2]; *isQuadratic = true; break; } case 'h': case 'H': { Point p = {arr[0], cur->y}; cmds->push(PathCommand::LineTo); pts->push(p); cur->x = arr[0]; break; } case 'v': case 'V': { Point p = {cur->x, arr[0]}; cmds->push(PathCommand::LineTo); pts->push(p); cur->y = arr[0]; break; } case 'z': case 'Z': { cmds->push(PathCommand::Close); *cur = *startPoint; break; } case 'a': case 'A': { _pathAppendArcTo(cmds, pts, cur, curCtl, arr[5], arr[6], arr[0], arr[1], arr[2], arr[3], arr[4]); *cur = *curCtl = {arr[5], arr[6]}; *isQuadratic = false; break; } default: { return false; } } return true; } static char* _nextCommand(char* path, char* cmd, float* arr, int* count) { int large, sweep; path = _skipComma(path); if (isalpha(*path)) { *cmd = *path; path++; *count = _numberCount(*cmd); } else { if (*cmd == 'm') *cmd = 'l'; else if (*cmd == 'M') *cmd = 'L'; } if (*count == 7) { //Special case for arc command if (_parseNumber(&path, &arr[0])) { if (_parseNumber(&path, &arr[1])) { if (_parseNumber(&path, &arr[2])) { if (_parseFlag(&path, &large)) { if (_parseFlag(&path, &sweep)) { if (_parseNumber(&path, &arr[5])) { if (_parseNumber(&path, &arr[6])) { arr[3] = (float)large; arr[4] = (float)sweep; return path; } } } } } } } *count = 0; return NULL; } for (int i = 0; i < *count; i++) { if (!_parseNumber(&path, &arr[i])) { *count = 0; return NULL; } path = _skipComma(path); } return path; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ bool svgPathToTvgPath(const char* svgPath, Array& cmds, Array& pts) { float numberArray[7]; int numberCount = 0; Point cur = { 0, 0 }; Point curCtl = { 0, 0 }; Point startPoint = { 0, 0 }; char cmd = 0; bool isQuadratic = false; char* path = (char*)svgPath; char* curLocale; curLocale = setlocale(LC_NUMERIC, NULL); if (curLocale) curLocale = strdup(curLocale); setlocale(LC_NUMERIC, "POSIX"); while ((path[0] != '\0')) { path = _nextCommand(path, &cmd, numberArray, &numberCount); if (!path) break; if (!_processCommand(&cmds, &pts, cmd, numberArray, numberCount, &cur, &curCtl, &startPoint, &isQuadratic)) break; } setlocale(LC_NUMERIC, curLocale); if (curLocale) free(curLocale); return true; }