/* * Copyright (c) 2021 - 2023 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TVG_MATH_H_ #define _TVG_MATH_H_ #define _USE_MATH_DEFINES #include #include #include "tvgCommon.h" #define mathMin(x, y) (((x) < (y)) ? (x) : (y)) #define mathMax(x, y) (((x) > (y)) ? (x) : (y)) static inline bool mathZero(float a) { return (fabsf(a) < FLT_EPSILON) ? true : false; } static inline bool mathEqual(float a, float b) { return (fabsf(a - b) < FLT_EPSILON); } static inline bool mathRightAngle(const Matrix* m) { auto radian = fabsf(atan2f(m->e21, m->e11)); if (radian < FLT_EPSILON || mathEqual(radian, float(M_PI_2)) || mathEqual(radian, float(M_PI))) return true; return false; } static inline bool mathSkewed(const Matrix* m) { return (fabsf(m->e21 + m->e12) > FLT_EPSILON); } static inline bool mathIdentity(const Matrix* m) { if (!mathEqual(m->e11, 1.0f) || !mathZero(m->e12) || !mathZero(m->e13) || !mathZero(m->e21) || !mathEqual(m->e22, 1.0f) || !mathZero(m->e23) || !mathZero(m->e31) || !mathZero(m->e32) || !mathEqual(m->e33, 1.0f)) { return false; } return true; } static inline bool mathInverse(const Matrix* m, Matrix* out) { auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) - m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) + m->e13 * (m->e21 * m->e32 - m->e22 * m->e31); if (mathZero(det)) return false; auto invDet = 1 / det; out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet; out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet; out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet; out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet; out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet; out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet; out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet; out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet; out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet; return true; } static inline void mathIdentity(Matrix* m) { m->e11 = 1.0f; m->e12 = 0.0f; m->e13 = 0.0f; m->e21 = 0.0f; m->e22 = 1.0f; m->e23 = 0.0f; m->e31 = 0.0f; m->e32 = 0.0f; m->e33 = 1.0f; } static inline void mathScale(Matrix* m, float scale) { m->e11 = scale; m->e22 = scale; } static inline void mathTranslate(Matrix* m, float x, float y) { m->e13 = x; m->e23 = y; } static inline void mathRotate(Matrix* m, float degree) { auto radian = degree / 180.0f * M_PI; auto cosVal = cosf(radian); auto sinVal = sinf(radian); m->e12 = m->e11 * -sinVal; m->e11 *= cosVal; m->e21 = m->e22 * sinVal; m->e22 *= cosVal; } static inline void mathMultiply(Point* pt, const Matrix* transform) { auto tx = pt->x * transform->e11 + pt->y * transform->e12 + transform->e13; auto ty = pt->x * transform->e21 + pt->y * transform->e22 + transform->e23; pt->x = tx; pt->y = ty; } static inline Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs) { Matrix m; m.e11 = lhs->e11 * rhs->e11 + lhs->e12 * rhs->e21 + lhs->e13 * rhs->e31; m.e12 = lhs->e11 * rhs->e12 + lhs->e12 * rhs->e22 + lhs->e13 * rhs->e32; m.e13 = lhs->e11 * rhs->e13 + lhs->e12 * rhs->e23 + lhs->e13 * rhs->e33; m.e21 = lhs->e21 * rhs->e11 + lhs->e22 * rhs->e21 + lhs->e23 * rhs->e31; m.e22 = lhs->e21 * rhs->e12 + lhs->e22 * rhs->e22 + lhs->e23 * rhs->e32; m.e23 = lhs->e21 * rhs->e13 + lhs->e22 * rhs->e23 + lhs->e23 * rhs->e33; m.e31 = lhs->e31 * rhs->e11 + lhs->e32 * rhs->e21 + lhs->e33 * rhs->e31; m.e32 = lhs->e31 * rhs->e12 + lhs->e32 * rhs->e22 + lhs->e33 * rhs->e32; m.e33 = lhs->e31 * rhs->e13 + lhs->e32 * rhs->e23 + lhs->e33 * rhs->e33; return m; } #endif //_TVG_MATH_H_