/* * Copyright (c) 2020 - 2022 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgSwCommon.h" #include "tvgBezier.h" #include #include /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ struct Line { Point pt1; Point pt2; }; static float _lineLength(const Point& pt1, const Point& pt2) { /* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm. With alpha = 1, beta = 3/8, giving results with the largest error less than 7% compared to the exact value. */ Point diff = {pt2.x - pt1.x, pt2.y - pt1.y}; if (diff.x < 0) diff.x = -diff.x; if (diff.y < 0) diff.y = -diff.y; return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f); } static void _lineSplitAt(const Line& cur, float at, Line& left, Line& right) { auto len = _lineLength(cur.pt1, cur.pt2); auto dx = ((cur.pt2.x - cur.pt1.x) / len) * at; auto dy = ((cur.pt2.y - cur.pt1.y) / len) * at; left.pt1 = cur.pt1; left.pt2.x = left.pt1.x + dx; left.pt2.y = left.pt1.y + dy; right.pt1 = left.pt2; right.pt2 = cur.pt2; } static bool _growOutlineContour(SwOutline& outline, uint32_t n) { if (outline.reservedCntrsCnt >= outline.cntrsCnt + n) return false; outline.reservedCntrsCnt = outline.cntrsCnt + n; outline.cntrs = static_cast(realloc(outline.cntrs, outline.reservedCntrsCnt * sizeof(uint32_t))); return true; } static void _reserveOutlineClose(SwOutline& outline) { //Dash outlines are always opened. //Only normal outlines use this information, it sholud be same to their contour counts. if (outline.closed) free(outline.closed); outline.closed = static_cast(calloc(outline.reservedCntrsCnt, sizeof(bool))); } static void _resetOutlineClose(SwOutline& outline) { memset(outline.closed, 0x0, outline.reservedCntrsCnt * sizeof(bool)); } static void _growOutlinePoint(SwOutline& outline, uint32_t n) { if (outline.reservedPtsCnt >= outline.ptsCnt + n) return; outline.reservedPtsCnt = outline.ptsCnt + n; outline.pts = static_cast(realloc(outline.pts, outline.reservedPtsCnt * sizeof(SwPoint))); outline.types = static_cast(realloc(outline.types, outline.reservedPtsCnt * sizeof(uint8_t))); } static void _outlineEnd(SwOutline& outline) { if (outline.ptsCnt == 0) return; _growOutlineContour(outline, 1); outline.cntrs[outline.cntrsCnt] = outline.ptsCnt - 1; ++outline.cntrsCnt; } static void _outlineMoveTo(SwOutline& outline, const Point* to, const Matrix* transform) { _growOutlinePoint(outline, 1); outline.pts[outline.ptsCnt] = mathTransform(to, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; if (outline.ptsCnt > 0) { _growOutlineContour(outline, 1); outline.cntrs[outline.cntrsCnt] = outline.ptsCnt - 1; ++outline.cntrsCnt; } ++outline.ptsCnt; } static void _outlineLineTo(SwOutline& outline, const Point* to, const Matrix* transform) { _growOutlinePoint(outline, 1); outline.pts[outline.ptsCnt] = mathTransform(to, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; ++outline.ptsCnt; } static void _outlineCubicTo(SwOutline& outline, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform) { _growOutlinePoint(outline, 3); outline.pts[outline.ptsCnt] = mathTransform(ctrl1, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_CUBIC; ++outline.ptsCnt; outline.pts[outline.ptsCnt] = mathTransform(ctrl2, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_CUBIC; ++outline.ptsCnt; outline.pts[outline.ptsCnt] = mathTransform(to, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; ++outline.ptsCnt; } static void _outlineClose(SwOutline& outline) { uint32_t i = 0; if (outline.cntrsCnt > 0) { i = outline.cntrs[outline.cntrsCnt - 1] + 1; } else { i = 0; //First Path } //Make sure there is at least one point in the current path if (outline.ptsCnt == i) return; //Close the path _growOutlinePoint(outline, 1); outline.pts[outline.ptsCnt] = outline.pts[i]; outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; ++outline.ptsCnt; outline.closed[outline.cntrsCnt] = true; } static void _dashLineTo(SwDashStroke& dash, const Point* to, const Matrix* transform) { _growOutlinePoint(*dash.outline, dash.outline->ptsCnt >> 1); _growOutlineContour(*dash.outline, dash.outline->cntrsCnt >> 1); Line cur = {dash.ptCur, *to}; auto len = _lineLength(cur.pt1, cur.pt2); if (len < dash.curLen) { dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &dash.ptCur, transform); _outlineLineTo(*dash.outline, to, transform); } } else { while (len > dash.curLen) { len -= dash.curLen; Line left, right; _lineSplitAt(cur, dash.curLen, left, right);; dash.curIdx = (dash.curIdx + 1) % dash.cnt; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &left.pt1, transform); _outlineLineTo(*dash.outline, &left.pt2, transform); } dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; cur = right; dash.ptCur = cur.pt1; } //leftovers dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &cur.pt1, transform); _outlineLineTo(*dash.outline, &cur.pt2, transform); } if (dash.curLen < 1 && TO_SWCOORD(len) > 1) { //move to next dash dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; } } dash.ptCur = *to; } static void _dashCubicTo(SwDashStroke& dash, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform) { _growOutlinePoint(*dash.outline, dash.outline->ptsCnt >> 1); _growOutlineContour(*dash.outline, dash.outline->cntrsCnt >> 1); Bezier cur = {dash.ptCur, *ctrl1, *ctrl2, *to}; auto len = bezLength(cur); if (len < dash.curLen) { dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &dash.ptCur, transform); _outlineCubicTo(*dash.outline, ctrl1, ctrl2, to, transform); } } else { while (len > dash.curLen) { Bezier left, right; len -= dash.curLen; bezSplitAt(cur, dash.curLen, left, right); if (!dash.curOpGap) { // leftovers from a previous command don't require moveTo if (dash.pattern[dash.curIdx] - dash.curLen < FLT_EPSILON) { _outlineMoveTo(*dash.outline, &left.start, transform); } _outlineCubicTo(*dash.outline, &left.ctrl1, &left.ctrl2, &left.end, transform); } dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; cur = right; dash.ptCur = right.start; } //leftovers dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &cur.start, transform); _outlineCubicTo(*dash.outline, &cur.ctrl1, &cur.ctrl2, &cur.end, transform); } if (dash.curLen < 1 && TO_SWCOORD(len) > 1) { //move to next dash dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; } } dash.ptCur = *to; } static SwOutline* _genDashOutline(const Shape* sdata, const Matrix* transform) { const PathCommand* cmds = nullptr; auto cmdCnt = sdata->pathCommands(&cmds); const Point* pts = nullptr; auto ptsCnt = sdata->pathCoords(&pts); //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return nullptr; SwDashStroke dash; dash.curIdx = 0; dash.curLen = 0; dash.ptStart = {0, 0}; dash.ptCur = {0, 0}; dash.curOpGap = false; const float* pattern; dash.cnt = sdata->strokeDash(&pattern); if (dash.cnt == 0) return nullptr; //OPTMIZE ME: Use mempool??? dash.pattern = const_cast(pattern); dash.outline = static_cast(calloc(1, sizeof(SwOutline))); //smart reservation auto outlinePtsCnt = 0; auto outlineCntrsCnt = 0; for (uint32_t i = 0; i < cmdCnt; ++i) { switch (*(cmds + i)) { case PathCommand::Close: { ++outlinePtsCnt; break; } case PathCommand::MoveTo: { ++outlineCntrsCnt; ++outlinePtsCnt; break; } case PathCommand::LineTo: { ++outlinePtsCnt; break; } case PathCommand::CubicTo: { outlinePtsCnt += 3; break; } } } ++outlinePtsCnt; //for close ++outlineCntrsCnt; //for end //No idea exact count.... Reserve Approximitely 20x... _growOutlinePoint(*dash.outline, outlinePtsCnt * 20); _growOutlineContour(*dash.outline, outlineCntrsCnt * 20); while (cmdCnt-- > 0) { switch (*cmds) { case PathCommand::Close: { _dashLineTo(dash, &dash.ptStart, transform); break; } case PathCommand::MoveTo: { //reset the dash dash.curIdx = 0; dash.curLen = *dash.pattern; dash.curOpGap = false; dash.ptStart = dash.ptCur = *pts; ++pts; break; } case PathCommand::LineTo: { _dashLineTo(dash, pts, transform); ++pts; break; } case PathCommand::CubicTo: { _dashCubicTo(dash, pts, pts + 1, pts + 2, transform); pts += 3; break; } } ++cmds; } _outlineEnd(*dash.outline); return dash.outline; } static bool _axisAlignedRect(const SwOutline* outline) { //Fast Track: axis-aligned rectangle? if (outline->ptsCnt != 5) return false; auto pt1 = outline->pts + 0; auto pt2 = outline->pts + 1; auto pt3 = outline->pts + 2; auto pt4 = outline->pts + 3; auto a = SwPoint{pt1->x, pt3->y}; auto b = SwPoint{pt3->x, pt1->y}; if ((*pt2 == a && *pt4 == b) || (*pt2 == b && *pt4 == a)) return true; return false; } static bool _genOutline(SwShape* shape, const Shape* sdata, const Matrix* transform, SwMpool* mpool, unsigned tid, bool hasComposite) { const PathCommand* cmds = nullptr; auto cmdCnt = sdata->pathCommands(&cmds); const Point* pts = nullptr; auto ptsCnt = sdata->pathCoords(&pts); //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return false; //smart reservation auto outlinePtsCnt = 0; auto outlineCntrsCnt = 0; auto closeCnt = 0; for (uint32_t i = 0; i < cmdCnt; ++i) { switch (*(cmds + i)) { case PathCommand::Close: { ++outlinePtsCnt; ++closeCnt; break; } case PathCommand::MoveTo: { ++outlineCntrsCnt; ++outlinePtsCnt; break; } case PathCommand::LineTo: { ++outlinePtsCnt; break; } case PathCommand::CubicTo: { outlinePtsCnt += 3; break; } } } if (static_cast(outlinePtsCnt - closeCnt) > ptsCnt) { TVGERR("SW_ENGINE", "Wrong a pair of the commands & points - required(%d), current(%d)", outlinePtsCnt - closeCnt, ptsCnt); return false; } ++outlinePtsCnt; //for close ++outlineCntrsCnt; //for end shape->outline = mpoolReqOutline(mpool, tid); auto outline = shape->outline; _growOutlinePoint(*outline, outlinePtsCnt); if (_growOutlineContour(*outline, outlineCntrsCnt)) { _reserveOutlineClose(*outline); } else { _resetOutlineClose(*outline); } //Generate Outlines while (cmdCnt-- > 0) { switch (*cmds) { case PathCommand::Close: { _outlineClose(*outline); break; } case PathCommand::MoveTo: { _outlineMoveTo(*outline, pts, transform); ++pts; break; } case PathCommand::LineTo: { _outlineLineTo(*outline, pts, transform); ++pts; break; } case PathCommand::CubicTo: { _outlineCubicTo(*outline, pts, pts + 1, pts + 2, transform); pts += 3; break; } } ++cmds; } _outlineEnd(*outline); outline->fillRule = sdata->fillRule(); shape->outline = outline; shape->fastTrack = (!hasComposite && _axisAlignedRect(shape->outline)); return true; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ bool shapePrepare(SwShape* shape, const Shape* sdata, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid, bool hasComposite) { if (!_genOutline(shape, sdata, transform, mpool, tid, hasComposite)) return false; if (!mathUpdateOutlineBBox(shape->outline, clipRegion, renderRegion, shape->fastTrack)) return false; //Keep it for Rasterization Region shape->bbox = renderRegion; //Check valid region if (renderRegion.max.x - renderRegion.min.x < 1 && renderRegion.max.y - renderRegion.min.y < 1) return false; //Check boundary if (renderRegion.min.x >= clipRegion.max.x || renderRegion.min.y >= clipRegion.max.y || renderRegion.max.x <= clipRegion.min.x || renderRegion.max.y <= clipRegion.min.y) return false; return true; } bool shapePrepared(const SwShape* shape) { return shape->rle ? true : false; } bool shapeGenRle(SwShape* shape, TVG_UNUSED const Shape* sdata, bool antiAlias) { //FIXME: Should we draw it? //Case: Stroke Line //if (shape.outline->opened) return true; //Case A: Fast Track Rectangle Drawing if (shape->fastTrack) return true; //Case B: Normal Shape RLE Drawing if ((shape->rle = rleRender(shape->rle, shape->outline, shape->bbox, antiAlias))) return true; return false; } void shapeDelOutline(SwShape* shape, SwMpool* mpool, uint32_t tid) { mpoolRetOutline(mpool, tid); shape->outline = nullptr; } void shapeReset(SwShape* shape) { rleReset(shape->rle); rleReset(shape->strokeRle); shape->fastTrack = false; shape->bbox.reset(); } void shapeFree(SwShape* shape) { rleFree(shape->rle); shapeDelFill(shape); if (shape->stroke) { rleFree(shape->strokeRle); strokeFree(shape->stroke); } } void shapeDelStroke(SwShape* shape) { if (!shape->stroke) return; rleFree(shape->strokeRle); shape->strokeRle = nullptr; strokeFree(shape->stroke); shape->stroke = nullptr; } void shapeResetStroke(SwShape* shape, const Shape* sdata, const Matrix* transform) { if (!shape->stroke) shape->stroke = static_cast(calloc(1, sizeof(SwStroke))); auto stroke = shape->stroke; if (!stroke) return; strokeReset(stroke, sdata, transform); rleReset(shape->strokeRle); } bool shapeGenStrokeRle(SwShape* shape, const Shape* sdata, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid) { SwOutline* shapeOutline = nullptr; SwOutline* strokeOutline = nullptr; bool freeOutline = false; bool ret = true; //Dash Style Stroke if (sdata->strokeDash(nullptr) > 0) { shapeOutline = _genDashOutline(sdata, transform); if (!shapeOutline) return false; freeOutline = true; //Normal Style stroke } else { if (!shape->outline) { if (!_genOutline(shape, sdata, transform, mpool, tid, false)) return false; } shapeOutline = shape->outline; } if (!strokeParseOutline(shape->stroke, *shapeOutline)) { ret = false; goto fail; } strokeOutline = strokeExportOutline(shape->stroke, mpool, tid); if (!mathUpdateOutlineBBox(strokeOutline, clipRegion, renderRegion, false)) { ret = false; goto fail; } shape->strokeRle = rleRender(shape->strokeRle, strokeOutline, renderRegion, true); fail: if (freeOutline) { if (shapeOutline->cntrs) free(shapeOutline->cntrs); if (shapeOutline->pts) free(shapeOutline->pts); if (shapeOutline->types) free(shapeOutline->types); if (shapeOutline->closed) free(shapeOutline->closed); free(shapeOutline); } mpoolRetStrokeOutline(mpool, tid); return ret; } bool shapeGenFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint32_t opacity, bool ctable) { return fillGenColorTable(shape->fill, fill, transform, surface, opacity, ctable); } bool shapeGenStrokeFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint32_t opacity, bool ctable) { return fillGenColorTable(shape->stroke->fill, fill, transform, surface, opacity, ctable); } void shapeResetFill(SwShape* shape) { if (!shape->fill) { shape->fill = static_cast(calloc(1, sizeof(SwFill))); if (!shape->fill) return; } fillReset(shape->fill); } void shapeResetStrokeFill(SwShape* shape) { if (!shape->stroke->fill) { shape->stroke->fill = static_cast(calloc(1, sizeof(SwFill))); if (!shape->stroke->fill) return; } fillReset(shape->stroke->fill); } void shapeDelFill(SwShape* shape) { if (!shape->fill) return; fillFree(shape->fill); shape->fill = nullptr; } void shapeDelStrokeFill(SwShape* shape) { if (!shape->stroke->fill) return; fillFree(shape->stroke->fill); shape->stroke->fill = nullptr; }