/* * Copyright (c) 2021 - 2022 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef THORVG_AVX_VECTOR_SUPPORT #include #define N_32BITS_IN_128REG 4 #define N_32BITS_IN_256REG 8 static inline __m128i ALPHA_BLEND(__m128i c, __m128i a) { //1. set the masks for the A/G and R/B channels auto AG = _mm_set1_epi32(0xff00ff00); auto RB = _mm_set1_epi32(0x00ff00ff); //2. mask the alpha vector - originally quartet [a, a, a, a] auto aAG = _mm_and_si128(a, AG); auto aRB = _mm_and_si128(a, RB); //3. calculate the alpha blending of the 2nd and 4th channel //- mask the color vector //- multiply it by the masked alpha vector //- add the correction to compensate bit shifting used instead of dividing by 255 //- shift bits - corresponding to division by 256 auto even = _mm_and_si128(c, RB); even = _mm_mullo_epi16(even, aRB); even =_mm_add_epi16(even, RB); even = _mm_srli_epi16(even, 8); //4. calculate the alpha blending of the 1st and 3rd channel: //- mask the color vector //- multiply it by the corresponding masked alpha vector and store the high bits of the result //- add the correction to compensate division by 256 instead of by 255 (next step) //- remove the low 8 bits to mimic the division by 256 auto odd = _mm_and_si128(c, AG); odd = _mm_mulhi_epu16(odd, aAG); odd = _mm_add_epi16(odd, RB); odd = _mm_and_si128(odd, AG); //5. the final result return _mm_or_si128(odd, even); } static void avxRasterRGBA32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len) { //1. calculate how many iterations we need to cover the length uint32_t iterations = len / N_32BITS_IN_256REG; uint32_t avxFilled = iterations * N_32BITS_IN_256REG; //2. set the beginning of the array dst += offset; //3. fill the octets for (uint32_t i = 0; i < iterations; ++i, dst += N_32BITS_IN_256REG) { _mm256_storeu_si256((__m256i*)dst, _mm256_set1_epi32(val)); } //4. fill leftovers (in the first step we have to set the pointer to the place where the avx job is done) int32_t leftovers = len - avxFilled; while (leftovers--) *dst++ = val; } static bool avxRasterTranslucentRect(SwSurface* surface, const SwBBox& region, uint32_t color) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto ialpha = 255 - static_cast(_alpha(color)); auto avxColor = _mm_set1_epi32(color); auto avxIalpha = _mm_set1_epi8(ialpha); for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; //1. fill the not aligned memory (for 128-bit registers a 16-bytes alignment is required) auto notAligned = ((uintptr_t)dst & 0xf) / 4; if (notAligned) { notAligned = (N_32BITS_IN_128REG - notAligned > w ? w : N_32BITS_IN_128REG - notAligned); for (uint32_t x = 0; x < notAligned; ++x, ++dst) { *dst = color + ALPHA_BLEND(*dst, ialpha); } } //2. fill the aligned memory - N_32BITS_IN_128REG pixels processed at once uint32_t iterations = (w - notAligned) / N_32BITS_IN_128REG; uint32_t avxFilled = iterations * N_32BITS_IN_128REG; auto avxDst = (__m128i*)dst; for (uint32_t x = 0; x < iterations; ++x, ++avxDst) { *avxDst = _mm_add_epi32(avxColor, ALPHA_BLEND(*avxDst, avxIalpha)); } //3. fill the remaining pixels int32_t leftovers = w - notAligned - avxFilled; dst += avxFilled; while (leftovers--) { *dst = color + ALPHA_BLEND(*dst, ialpha); dst++; } } return true; } static bool avxRasterTranslucentRle(SwSurface* surface, const SwRleData* rle, uint32_t color) { auto span = rle->spans; uint32_t src; for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage); else src = color; auto ialpha = 255 - static_cast(_alpha(src)); //1. fill the not aligned memory (for 128-bit registers a 16-bytes alignment is required) auto notAligned = ((uintptr_t)dst & 0xf) / 4; if (notAligned) { notAligned = (N_32BITS_IN_128REG - notAligned > span->len ? span->len : N_32BITS_IN_128REG - notAligned); for (uint32_t x = 0; x < notAligned; ++x, ++dst) { *dst = src + ALPHA_BLEND(*dst, ialpha); } } //2. fill the aligned memory using avx - N_32BITS_IN_128REG pixels processed at once //In order to avoid unneccessary avx variables declarations a check is made whether there are any iterations at all uint32_t iterations = (span->len - notAligned) / N_32BITS_IN_128REG; uint32_t avxFilled = 0; if (iterations > 0) { auto avxSrc = _mm_set1_epi32(src); auto avxIalpha = _mm_set1_epi8(ialpha); avxFilled = iterations * N_32BITS_IN_128REG; auto avxDst = (__m128i*)dst; for (uint32_t x = 0; x < iterations; ++x, ++avxDst) { *avxDst = _mm_add_epi32(avxSrc, ALPHA_BLEND(*avxDst, avxIalpha)); } } //3. fill the remaining pixels int32_t leftovers = span->len - notAligned - avxFilled; dst += avxFilled; while (leftovers--) { *dst = src + ALPHA_BLEND(*dst, ialpha); dst++; } ++span; } return true; } #endif