// This code is in the public domain -- castanyo@yahoo.es

#pragma once
#ifndef NV_MATH_VECTOR_INL
#define NV_MATH_VECTOR_INL

#include "Vector.h"
#include "nvcore/Utils.h" // min, max
#include "nvcore/Hash.h" // hash

namespace nv
{

    // Helpers to convert vector types. Assume T has x,y members and 2 argument constructor.
    //template <typename T> T to(Vector2::Arg v) { return T(v.x, v.y); }

    // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor.
    //template <typename T> T to(Vector3::Arg v) { return T(v.x, v.y, v.z); }

    // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor.
    //template <typename T> T to(Vector4::Arg v) { return T(v.x, v.y, v.z, v.w); }


    // Vector2
    inline Vector2::Vector2() {}
    inline Vector2::Vector2(float f) : x(f), y(f) {}
    inline Vector2::Vector2(float x, float y) : x(x), y(y) {}
    inline Vector2::Vector2(Vector2::Arg v) : x(v.x), y(v.y) {}

    inline const Vector2 & Vector2::operator=(Vector2::Arg v)
    {
        x = v.x;
        y = v.y;
        return *this;
    }

    inline const float * Vector2::ptr() const
    {
        return &x;
    }

    inline void Vector2::set(float x, float y)
    {
        this->x = x;
        this->y = y;
    }

    inline Vector2 Vector2::operator-() const
    {
        return Vector2(-x, -y);
    }

    inline void Vector2::operator+=(Vector2::Arg v)
    {
        x += v.x;
        y += v.y;
    }

    inline void Vector2::operator-=(Vector2::Arg v)
    {
        x -= v.x;
        y -= v.y;
    }

    inline void Vector2::operator*=(float s)
    {
        x *= s;
        y *= s;
    }

    inline void Vector2::operator*=(Vector2::Arg v)
    {
        x *= v.x;
        y *= v.y;
    }

    inline bool operator==(Vector2::Arg a, Vector2::Arg b)
    {
        return a.x == b.x && a.y == b.y; 
    }
    inline bool operator!=(Vector2::Arg a, Vector2::Arg b)
    {
        return a.x != b.x || a.y != b.y; 
    }


    // Vector3
    inline Vector3::Vector3() {}
    inline Vector3::Vector3(float f) : x(f), y(f), z(f) {}
    inline Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
    inline Vector3::Vector3(Vector2::Arg v, float z) : x(v.x), y(v.y), z(z) {}
    inline Vector3::Vector3(Vector3::Arg v) : x(v.x), y(v.y), z(v.z) {}

    inline const Vector3 & Vector3::operator=(Vector3::Arg v)
    {
        x = v.x;
        y = v.y;
        z = v.z;
        return *this;
    }


    inline Vector2 Vector3::xy() const
    {
        return Vector2(x, y);
    }

    inline const float * Vector3::ptr() const
    {
        return &x;
    }

    inline void Vector3::set(float x, float y, float z)
    {
        this->x = x;
        this->y = y;
        this->z = z;
    }

    inline Vector3 Vector3::operator-() const
    {
        return Vector3(-x, -y, -z);
    }

    inline void Vector3::operator+=(Vector3::Arg v)
    {
        x += v.x;
        y += v.y;
        z += v.z;
    }

    inline void Vector3::operator-=(Vector3::Arg v)
    {
        x -= v.x;
        y -= v.y;
        z -= v.z;
    }

    inline void Vector3::operator*=(float s)
    {
        x *= s;
        y *= s;
        z *= s;
    }

    inline void Vector3::operator/=(float s)
    {
        float is = 1.0f / s;
        x *= is;
        y *= is;
        z *= is;
    }

    inline void Vector3::operator*=(Vector3::Arg v)
    {
        x *= v.x;
        y *= v.y;
        z *= v.z;
    }

    inline void Vector3::operator/=(Vector3::Arg v)
    {
        x /= v.x;
        y /= v.y;
        z /= v.z;
    }

    inline bool operator==(Vector3::Arg a, Vector3::Arg b)
    {
        return a.x == b.x && a.y == b.y && a.z == b.z; 
    }
    inline bool operator!=(Vector3::Arg a, Vector3::Arg b)
    {
        return a.x != b.x || a.y != b.y || a.z != b.z; 
    }


    // Vector4
    inline Vector4::Vector4() {}
    inline Vector4::Vector4(float f) : x(f), y(f), z(f), w(f) {}
    inline Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
    inline Vector4::Vector4(Vector2::Arg v, float z, float w) : x(v.x), y(v.y), z(z), w(w) {}
    inline Vector4::Vector4(Vector2::Arg v, Vector2::Arg u) : x(v.x), y(v.y), z(u.x), w(u.y) {}
    inline Vector4::Vector4(Vector3::Arg v, float w) : x(v.x), y(v.y), z(v.z), w(w) {}
    inline Vector4::Vector4(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}

    inline const Vector4 & Vector4::operator=(const Vector4 & v)
    {
        x = v.x;
        y = v.y;
        z = v.z;
        w = v.w;
        return *this;
    }

    inline Vector2 Vector4::xy() const
    {
        return Vector2(x, y);
    }

    inline Vector2 Vector4::zw() const
    {
        return Vector2(z, w);
    }

    inline Vector3 Vector4::xyz() const
    {
        return Vector3(x, y, z);
    }

    inline const float * Vector4::ptr() const
    {
        return &x;
    }

    inline void Vector4::set(float x, float y, float z, float w)
    {
        this->x = x;
        this->y = y;
        this->z = z;
        this->w = w;
    }

    inline Vector4 Vector4::operator-() const
    {
        return Vector4(-x, -y, -z, -w);
    }

    inline void Vector4::operator+=(Vector4::Arg v)
    {
        x += v.x;
        y += v.y;
        z += v.z;
        w += v.w;
    }

    inline void Vector4::operator-=(Vector4::Arg v)
    {
        x -= v.x;
        y -= v.y;
        z -= v.z;
        w -= v.w;
    }

    inline void Vector4::operator*=(float s)
    {
        x *= s;
        y *= s;
        z *= s;
        w *= s;
    }

    inline void Vector4::operator/=(float s)
    {
        x /= s;
        y /= s;
        z /= s;
        w /= s;
    }

    inline void Vector4::operator*=(Vector4::Arg v)
    {
        x *= v.x;
        y *= v.y;
        z *= v.z;
        w *= v.w;
    }

    inline void Vector4::operator/=(Vector4::Arg v)
    {
        x /= v.x;
        y /= v.y;
        z /= v.z;
        w /= v.w;
    }

    inline bool operator==(Vector4::Arg a, Vector4::Arg b)
    {
        return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w; 
    }
    inline bool operator!=(Vector4::Arg a, Vector4::Arg b)
    {
        return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w; 
    }



    // Functions


    // Vector2

    inline Vector2 add(Vector2::Arg a, Vector2::Arg b)
    {
        return Vector2(a.x + b.x, a.y + b.y);
    }
    inline Vector2 operator+(Vector2::Arg a, Vector2::Arg b)
    {
        return add(a, b);
    }

    inline Vector2 sub(Vector2::Arg a, Vector2::Arg b)
    {
        return Vector2(a.x - b.x, a.y - b.y);
    }
    inline Vector2 operator-(Vector2::Arg a, Vector2::Arg b)
    {
        return sub(a, b);
    }

    inline Vector2 scale(Vector2::Arg v, float s)
    {
        return Vector2(v.x * s, v.y * s);
    }

    inline Vector2 scale(Vector2::Arg v, Vector2::Arg s)
    {
        return Vector2(v.x * s.x, v.y * s.y);
    }

    inline Vector2 operator*(Vector2::Arg v, float s)
    {
        return scale(v, s);
    }

    inline Vector2 operator*(Vector2::Arg v1, Vector2::Arg v2)
    {
        return Vector2(v1.x*v2.x, v1.y*v2.y);
    }

    inline Vector2 operator*(float s, Vector2::Arg v)
    {
        return scale(v, s);
    }

    inline Vector2 operator/(Vector2::Arg v, float s)
    {
        return scale(v, 1.0f/s);
    }

    inline Vector2 lerp(Vector2::Arg v1, Vector2::Arg v2, float t)
    {
        const float s = 1.0f - t;
        return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y);
    }

    inline float dot(Vector2::Arg a, Vector2::Arg b)
    {
        return a.x * b.x + a.y * b.y;
    }

    inline float lengthSquared(Vector2::Arg v)
    {
        return v.x * v.x + v.y * v.y;
    }

    inline float length(Vector2::Arg v)
    {
        return sqrtf(lengthSquared(v));
    }

    inline float distance(Vector2::Arg a, Vector2::Arg b)
    {
        return length(a - b);
    }

    inline float inverseLength(Vector2::Arg v)
    {
        return 1.0f / sqrtf(lengthSquared(v));
    }

    inline bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON)
    {
        return equal(length(v), 1, epsilon);
    }

    inline Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON)
    {
        float l = length(v);
        nvDebugCheck(!isZero(l, epsilon));
        Vector2 n = scale(v, 1.0f / l);
        nvDebugCheck(isNormalized(n));
        return n;
    }

    inline Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON)
    {
        float l = length(v);
        if (isZero(l, epsilon)) {
            return fallback;
        }
        return scale(v, 1.0f / l);
    }

    // Safe, branchless normalization from Andy Firth. All error checking ommitted.
    // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
    inline Vector2 normalizeFast(Vector2::Arg v)
    {
        const float very_small_float = 1.0e-037f;
        float l = very_small_float + length(v);
        return scale(v, 1.0f / l);
    }

    inline bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON)
    {
        return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon);
    }

    inline Vector2 min(Vector2::Arg a, Vector2::Arg b)
    {
        return Vector2(min(a.x, b.x), min(a.y, b.y));
    }

    inline Vector2 max(Vector2::Arg a, Vector2::Arg b)
    {
        return Vector2(max(a.x, b.x), max(a.y, b.y));
    }

    inline Vector2 clamp(Vector2::Arg v, float min, float max)
    {
        return Vector2(clamp(v.x, min, max), clamp(v.y, min, max));
    }

    inline Vector2 saturate(Vector2::Arg v)
    {
        return Vector2(saturate(v.x), saturate(v.y));
    }

    inline bool isFinite(Vector2::Arg v)
    {
        return isFinite(v.x) && isFinite(v.y);
    }

    inline Vector2 validate(Vector2::Arg v, Vector2::Arg fallback = Vector2(0.0f))
    {
        if (!isFinite(v)) return fallback;
        Vector2 vf = v;
        nv::floatCleanup(vf.component, 2);
        return vf;
    }

    // Note, this is the area scaled by 2!
    inline float triangleArea(Vector2::Arg v0, Vector2::Arg v1)
    {
	    return (v0.x * v1.y - v0.y * v1.x); // * 0.5f;
    }
    inline float triangleArea(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c)
    {
        // IC: While it may be appealing to use the following expression:
        //return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f;

        // That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point 
        // numbers and the results becomes very unstable and dependent on the order of the factors.

        // Instead, it's preferable to subtract the vertices first, and multiply the resulting small values together. The result
        // in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of 
        // the triangle.

        //return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f;
        return triangleArea(a-c, b-c);
    }


    template <>
    inline uint hash(const Vector2 & v, uint h)
    {
        return sdbmFloatHash(v.component, 2, h);
    }



    // Vector3

    inline Vector3 add(Vector3::Arg a, Vector3::Arg b)
    {
        return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
    }
    inline Vector3 add(Vector3::Arg a, float b)
    {
        return Vector3(a.x + b, a.y + b, a.z + b);
    }
    inline Vector3 operator+(Vector3::Arg a, Vector3::Arg b)
    {
        return add(a, b);
    }
    inline Vector3 operator+(Vector3::Arg a, float b)
    {
        return add(a, b);
    }

    inline Vector3 sub(Vector3::Arg a, Vector3::Arg b)
    {
        return Vector3(a.x - b.x, a.y - b.y, a.z - b.z);
    }
    inline Vector3 sub(Vector3::Arg a, float b)
    {
        return Vector3(a.x - b, a.y - b, a.z - b);
    }
    inline Vector3 operator-(Vector3::Arg a, Vector3::Arg b)
    {
        return sub(a, b);
    }
    inline Vector3 operator-(Vector3::Arg a, float b)
    {
        return sub(a, b);
    }

    inline Vector3 cross(Vector3::Arg a, Vector3::Arg b)
    {
        return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
    }

    inline Vector3 scale(Vector3::Arg v, float s)
    {
        return Vector3(v.x * s, v.y * s, v.z * s);
    }

    inline Vector3 scale(Vector3::Arg v, Vector3::Arg s)
    {
        return Vector3(v.x * s.x, v.y * s.y, v.z * s.z);
    }

    inline Vector3 operator*(Vector3::Arg v, float s)
    {
        return scale(v, s);
    }

    inline Vector3 operator*(float s, Vector3::Arg v)
    {
        return scale(v, s);
    }

    inline Vector3 operator*(Vector3::Arg v, Vector3::Arg s)
    {
        return scale(v, s);
    }

    inline Vector3 operator/(Vector3::Arg v, float s)
    {
        return scale(v, 1.0f/s);
    }

    /*inline Vector3 add_scaled(Vector3::Arg a, Vector3::Arg b, float s)
    {
        return Vector3(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s);
    }*/

    inline Vector3 lerp(Vector3::Arg v1, Vector3::Arg v2, float t)
    {
        const float s = 1.0f - t;
        return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z);
    }

    inline float dot(Vector3::Arg a, Vector3::Arg b)
    {
        return a.x * b.x + a.y * b.y + a.z * b.z;
    }

    inline float lengthSquared(Vector3::Arg v)
    {
        return v.x * v.x + v.y * v.y + v.z * v.z;
    }

    inline float length(Vector3::Arg v)
    {
        return sqrtf(lengthSquared(v));
    }

    inline float distance(Vector3::Arg a, Vector3::Arg b)
    {
        return length(a - b);
    }

    inline float distanceSquared(Vector3::Arg a, Vector3::Arg b)
    {
        return lengthSquared(a - b);
    }

    inline float inverseLength(Vector3::Arg v)
    {
        return 1.0f / sqrtf(lengthSquared(v));
    }

    inline bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON)
    {
        return equal(length(v), 1, epsilon);
    }

    inline Vector3 normalize(Vector3::Arg v, float epsilon = NV_EPSILON)
    {
        float l = length(v);
        nvDebugCheck(!isZero(l, epsilon));
        Vector3 n = scale(v, 1.0f / l);
        nvDebugCheck(isNormalized(n));
        return n;
    }

    inline Vector3 normalizeSafe(Vector3::Arg v, Vector3::Arg fallback, float epsilon = NV_EPSILON)
    {
        float l = length(v);
        if (isZero(l, epsilon)) {
            return fallback;
        }
        return scale(v, 1.0f / l);
    }

    // Safe, branchless normalization from Andy Firth. All error checking ommitted.
    // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
    inline Vector3 normalizeFast(Vector3::Arg v)
    {
        const float very_small_float = 1.0e-037f;
        float l = very_small_float + length(v);
        return scale(v, 1.0f / l);
    }

    inline bool equal(Vector3::Arg v1, Vector3::Arg v2, float epsilon = NV_EPSILON)
    {
        return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon);
    }

    inline Vector3 min(Vector3::Arg a, Vector3::Arg b)
    {
        return Vector3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
    }

    inline Vector3 max(Vector3::Arg a, Vector3::Arg b)
    {
        return Vector3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
    }

    inline Vector3 clamp(Vector3::Arg v, float min, float max)
    {
        return Vector3(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max));
    }

    inline Vector3 saturate(Vector3::Arg v)
    {
        return Vector3(saturate(v.x), saturate(v.y), saturate(v.z));
    }

    inline Vector3 floor(Vector3::Arg v)
    {
        return Vector3(floorf(v.x), floorf(v.y), floorf(v.z));
    }

    inline Vector3 ceil(Vector3::Arg v)
    {
        return Vector3(ceilf(v.x), ceilf(v.y), ceilf(v.z));
    }

    inline bool isFinite(Vector3::Arg v)
    {
        return isFinite(v.x) && isFinite(v.y) && isFinite(v.z);
    }

    inline Vector3 validate(Vector3::Arg v, Vector3::Arg fallback = Vector3(0.0f))
    {
        if (!isFinite(v)) return fallback;
        Vector3 vf = v;
        nv::floatCleanup(vf.component, 3);
        return vf;
    }

    inline Vector3 reflect(Vector3::Arg v, Vector3::Arg n)
    {
	    return v - (2 * dot(v, n)) * n;
    }

    template <>
    inline uint hash(const Vector3 & v, uint h)
    {
        return sdbmFloatHash(v.component, 3, h);
    }


    // Vector4

    inline Vector4 add(Vector4::Arg a, Vector4::Arg b)
    {
        return Vector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
    }
    inline Vector4 operator+(Vector4::Arg a, Vector4::Arg b)
    {
        return add(a, b);
    }

    inline Vector4 sub(Vector4::Arg a, Vector4::Arg b)
    {
        return Vector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
    }
    inline Vector4 operator-(Vector4::Arg a, Vector4::Arg b)
    {
        return sub(a, b);
    }

    inline Vector4 scale(Vector4::Arg v, float s)
    {
        return Vector4(v.x * s, v.y * s, v.z * s, v.w * s);
    }

    inline Vector4 scale(Vector4::Arg v, Vector4::Arg s)
    {
        return Vector4(v.x * s.x, v.y * s.y, v.z * s.z, v.w * s.w);
    }

    inline Vector4 operator*(Vector4::Arg v, float s)
    {
        return scale(v, s);
    }

    inline Vector4 operator*(float s, Vector4::Arg v)
    {
        return scale(v, s);
    }

    inline Vector4 operator*(Vector4::Arg v, Vector4::Arg s)
    {
        return scale(v, s);
    }

    inline Vector4 operator/(Vector4::Arg v, float s)
    {
        return scale(v, 1.0f/s);
    }

    /*inline Vector4 add_scaled(Vector4::Arg a, Vector4::Arg b, float s)
    {
        return Vector4(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s, a.w + b.w * s);
    }*/

    inline Vector4 lerp(Vector4::Arg v1, Vector4::Arg v2, float t)
    {
        const float s = 1.0f - t;
        return Vector4(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z, v1.w * s + t * v2.w);
    }

    inline float dot(Vector4::Arg a, Vector4::Arg b)
    {
        return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
    }

    inline float lengthSquared(Vector4::Arg v)
    {
        return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
    }

    inline float length(Vector4::Arg v)
    {
        return sqrtf(lengthSquared(v));
    }

    inline float inverseLength(Vector4::Arg v)
    {
        return 1.0f / sqrtf(lengthSquared(v));
    }

    inline bool isNormalized(Vector4::Arg v, float epsilon = NV_NORMAL_EPSILON)
    {
        return equal(length(v), 1, epsilon);
    }

    inline Vector4 normalize(Vector4::Arg v, float epsilon = NV_EPSILON)
    {
        float l = length(v);
        nvDebugCheck(!isZero(l, epsilon));
        Vector4 n = scale(v, 1.0f / l);
        nvDebugCheck(isNormalized(n));
        return n;
    }

    inline Vector4 normalizeSafe(Vector4::Arg v, Vector4::Arg fallback, float epsilon = NV_EPSILON)
    {
        float l = length(v);
        if (isZero(l, epsilon)) {
            return fallback;
        }
        return scale(v, 1.0f / l);
    }

    // Safe, branchless normalization from Andy Firth. All error checking ommitted.
    // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/
    inline Vector4 normalizeFast(Vector4::Arg v)
    {
        const float very_small_float = 1.0e-037f;
        float l = very_small_float + length(v);
        return scale(v, 1.0f / l);
    }

    inline bool equal(Vector4::Arg v1, Vector4::Arg v2, float epsilon = NV_EPSILON)
    {
        return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon) && equal(v1.w, v2.w, epsilon);
    }

    inline Vector4 min(Vector4::Arg a, Vector4::Arg b)
    {
        return Vector4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w));
    }

    inline Vector4 max(Vector4::Arg a, Vector4::Arg b)
    {
        return Vector4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w));
    }

    inline Vector4 clamp(Vector4::Arg v, float min, float max)
    {
        return Vector4(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max), clamp(v.w, min, max));
    }

    inline Vector4 saturate(Vector4::Arg v)
    {
        return Vector4(saturate(v.x), saturate(v.y), saturate(v.z), saturate(v.w));
    }

    inline bool isFinite(Vector4::Arg v)
    {
        return isFinite(v.x) && isFinite(v.y) && isFinite(v.z) && isFinite(v.w);
    }

    inline Vector4 validate(Vector4::Arg v, Vector4::Arg fallback = Vector4(0.0f))
    {
        if (!isFinite(v)) return fallback;
        Vector4 vf = v;
        nv::floatCleanup(vf.component, 4);
        return vf;
    }

    template <>
    inline uint hash(const Vector4 & v, uint h)
    {
        return sdbmFloatHash(v.component, 4, h);
    }


#if NV_OS_IOS // LLVM is not happy with implicit conversion of immediate constants to float

    //int:

    inline Vector2 scale(Vector2::Arg v, int s)
    {
        return Vector2(v.x * s, v.y * s);
    }

    inline Vector2 operator*(Vector2::Arg v, int s)
    {
        return scale(v, s);
    }

    inline Vector2 operator*(int s, Vector2::Arg v)
    {
        return scale(v, s);
    }

    inline Vector2 operator/(Vector2::Arg v, int s)
    {
        return scale(v, 1.0f/s);
    }

    inline Vector3 scale(Vector3::Arg v, int s)
    {
        return Vector3(v.x * s, v.y * s, v.z * s);
    }

    inline Vector3 operator*(Vector3::Arg v, int s)
    {
        return scale(v, s);
    }

    inline Vector3 operator*(int s, Vector3::Arg v)
    {
        return scale(v, s);
    }

    inline Vector3 operator/(Vector3::Arg v, int s)
    {
        return scale(v, 1.0f/s);
    }

    inline Vector4 scale(Vector4::Arg v, int s)
    {
        return Vector4(v.x * s, v.y * s, v.z * s, v.w * s);
    }

    inline Vector4 operator*(Vector4::Arg v, int s)
    {
        return scale(v, s);
    }

    inline Vector4 operator*(int s, Vector4::Arg v)
    {
        return scale(v, s);
    }

    inline Vector4 operator/(Vector4::Arg v, int s)
    {
        return scale(v, 1.0f/s);
    }

    //double:

    inline Vector3 operator*(Vector3::Arg v, double s)
    {
        return scale(v, (float)s);
    }

    inline Vector3 operator*(double s, Vector3::Arg v)
    {
        return scale(v, (float)s);
    }

    inline Vector3 operator/(Vector3::Arg v, double s)
    {
        return scale(v, 1.f/((float)s));
    }    
        
#endif //NV_OS_IOS

} // nv namespace

#endif // NV_MATH_VECTOR_INL