// This code is in the public domain -- Ignacio Castaņo #include "Sphere.h" #include "Vector.inl" #include "Box.inl" #include // FLT_MAX using namespace nv; const float radiusEpsilon = 1e-4f; Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1) { if (p0 == p1) *this = Sphere(p0); else { center = (p0 + p1) * 0.5f; radius = length(p0 - center) + radiusEpsilon; float d0 = length(p0 - center); float d1 = length(p1 - center); nvDebugCheck(equal(d0, radius - radiusEpsilon)); nvDebugCheck(equal(d1, radius - radiusEpsilon)); } } Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2) { if (p0 == p1 || p0 == p2) *this = Sphere(p1, p2); else if (p1 == p2) *this = Sphere(p0, p2); else { Vector3 a = p1 - p0; Vector3 b = p2 - p0; Vector3 c = cross(a, b); float denominator = 2.0f * lengthSquared(c); if (!isZero(denominator)) { Vector3 d = (lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator; center = p0 + d; radius = length(d) + radiusEpsilon; float d0 = length(p0 - center); float d1 = length(p1 - center); float d2 = length(p2 - center); nvDebugCheck(equal(d0, radius - radiusEpsilon)); nvDebugCheck(equal(d1, radius - radiusEpsilon)); nvDebugCheck(equal(d2, radius - radiusEpsilon)); } else { // @@ This is a specialization of the code below, but really, the only thing we need to do here is to find the two most distant points. // Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest. Sphere s0(p1, p2); float d0 = distanceSquared(s0, p0); if (d0 > 0) s0.radius = NV_FLOAT_MAX; Sphere s1(p0, p2); float d1 = distanceSquared(s1, p1); if (d1 > 0) s1.radius = NV_FLOAT_MAX; Sphere s2(p0, p1); float d2 = distanceSquared(s2, p2); if (d2 > 0) s1.radius = NV_FLOAT_MAX; if (s0.radius < s1.radius && s0.radius < s2.radius) { center = s0.center; radius = s0.radius; } else if (s1.radius < s2.radius) { center = s1.center; radius = s1.radius; } else { center = s2.center; radius = s2.radius; } } } } Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3) { if (p0 == p1 || p0 == p2 || p0 == p3) *this = Sphere(p1, p2, p3); else if (p1 == p2 || p1 == p3) *this = Sphere(p0, p2, p3); else if (p2 == p3) *this = Sphere(p0, p1, p2); else { // @@ This only works if the points are not coplanar! Vector3 a = p1 - p0; Vector3 b = p2 - p0; Vector3 c = p3 - p0; float denominator = 2.0f * dot(c, cross(a, b)); // triple product. if (!isZero(denominator)) { Vector3 d = (lengthSquared(c) * cross(a, b) + lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator; center = p0 + d; radius = length(d) + radiusEpsilon; float d0 = length(p0 - center); float d1 = length(p1 - center); float d2 = length(p2 - center); float d3 = length(p3 - center); nvDebugCheck(equal(d0, radius - radiusEpsilon)); nvDebugCheck(equal(d1, radius - radiusEpsilon)); nvDebugCheck(equal(d2, radius - radiusEpsilon)); nvDebugCheck(equal(d3, radius - radiusEpsilon)); } else { // Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest. Sphere s0(p1, p2, p3); float d0 = distanceSquared(s0, p0); if (d0 > 0) s0.radius = NV_FLOAT_MAX; Sphere s1(p0, p2, p3); float d1 = distanceSquared(s1, p1); if (d1 > 0) s1.radius = NV_FLOAT_MAX; Sphere s2(p0, p1, p3); float d2 = distanceSquared(s2, p2); if (d2 > 0) s2.radius = NV_FLOAT_MAX; Sphere s3(p0, p1, p2); float d3 = distanceSquared(s3, p3); if (d3 > 0) s2.radius = NV_FLOAT_MAX; if (s0.radius < s1.radius && s0.radius < s2.radius && s0.radius < s3.radius) { center = s0.center; radius = s0.radius; } else if (s1.radius < s2.radius && s1.radius < s3.radius) { center = s1.center; radius = s1.radius; } else if (s1.radius < s3.radius) { center = s2.center; radius = s2.radius; } else { center = s3.center; radius = s3.radius; } } } } float nv::distanceSquared(const Sphere & sphere, const Vector3 & point) { return lengthSquared(sphere.center - point) - square(sphere.radius); } // Implementation of "MiniBall" based on: // http://www.flipcode.com/archives/Smallest_Enclosing_Spheres.shtml static Sphere recurseMini(const Vector3 *P[], uint p, uint b = 0) { Sphere MB; switch(b) { case 0: MB = Sphere(*P[0]); break; case 1: MB = Sphere(*P[-1]); break; case 2: MB = Sphere(*P[-1], *P[-2]); break; case 3: MB = Sphere(*P[-1], *P[-2], *P[-3]); break; case 4: MB = Sphere(*P[-1], *P[-2], *P[-3], *P[-4]); return MB; } for (uint i = 0; i < p; i++) { if (distanceSquared(MB, *P[i]) > 0) // Signed square distance to sphere { for (uint j = i; j > 0; j--) { swap(P[j], P[j-1]); } MB = recurseMini(P + 1, i, b + 1); } } return MB; } static bool allInside(const Sphere & sphere, const Vector3 * pointArray, const uint pointCount) { for (uint i = 0; i < pointCount; i++) { if (distanceSquared(sphere, pointArray[i]) >= NV_EPSILON) { return false; } } return true; } Sphere nv::miniBall(const Vector3 * pointArray, const uint pointCount) { nvDebugCheck(pointArray != NULL); nvDebugCheck(pointCount > 0); const Vector3 **L = new const Vector3*[pointCount]; for (uint i = 0; i < pointCount; i++) { L[i] = &pointArray[i]; } Sphere sphere = recurseMini(L, pointCount); delete [] L; nvDebugCheck(allInside(sphere, pointArray, pointCount)); return sphere; } // Approximate bounding sphere, based on "An Efficient Bounding Sphere" by Jack Ritter, from "Graphics Gems" Sphere nv::approximateSphere_Ritter(const Vector3 * pointArray, const uint pointCount) { nvDebugCheck(pointArray != NULL); nvDebugCheck(pointCount > 0); Vector3 xmin, xmax, ymin, ymax, zmin, zmax; xmin = xmax = ymin = ymax = zmin = zmax = pointArray[0]; // FIRST PASS: find 6 minima/maxima points xmin.x = ymin.y = zmin.z = FLT_MAX; xmax.x = ymax.y = zmax.z = -FLT_MAX; for (uint i = 0; i < pointCount; i++) { const Vector3 & p = pointArray[i]; if (p.x < xmin.x) xmin = p; if (p.x > xmax.x) xmax = p; if (p.y < ymin.y) ymin = p; if (p.y > ymax.y) ymax = p; if (p.z < zmin.z) zmin = p; if (p.z > zmax.z) zmax = p; } float xspan = lengthSquared(xmax - xmin); float yspan = lengthSquared(ymax - ymin); float zspan = lengthSquared(zmax - zmin); // Set points dia1 & dia2 to the maximally separated pair. Vector3 dia1 = xmin; Vector3 dia2 = xmax; float maxspan = xspan; if (yspan > maxspan) { maxspan = yspan; dia1 = ymin; dia2 = ymax; } if (zspan > maxspan) { dia1 = zmin; dia2 = zmax; } // |dia1-dia2| is a diameter of initial sphere // calc initial center Sphere sphere; sphere.center = (dia1 + dia2) / 2.0f; // calculate initial radius**2 and radius float rad_sq = lengthSquared(dia2 - sphere.center); sphere.radius = sqrtf(rad_sq); // SECOND PASS: increment current sphere for (uint i = 0; i < pointCount; i++) { const Vector3 & p = pointArray[i]; float old_to_p_sq = lengthSquared(p - sphere.center); if (old_to_p_sq > rad_sq) // do r**2 test first { // this point is outside of current sphere float old_to_p = sqrtf(old_to_p_sq); // calc radius of new sphere sphere.radius = (sphere.radius + old_to_p) / 2.0f; rad_sq = sphere.radius * sphere.radius; // for next r**2 compare float old_to_new = old_to_p - sphere.radius; // calc center of new sphere sphere.center = (sphere.radius * sphere.center + old_to_new * p) / old_to_p; } } nvDebugCheck(allInside(sphere, pointArray, pointCount)); return sphere; } static float computeSphereRadius(const Vector3 & center, const Vector3 * pointArray, const uint pointCount) { float maxRadius2 = 0; for (uint i = 0; i < pointCount; i++) { const Vector3 & p = pointArray[i]; float r2 = lengthSquared(center - p); if (r2 > maxRadius2) { maxRadius2 = r2; } } return sqrtf(maxRadius2) + radiusEpsilon; } Sphere nv::approximateSphere_AABB(const Vector3 * pointArray, const uint pointCount) { nvDebugCheck(pointArray != NULL); nvDebugCheck(pointCount > 0); Box box; box.clearBounds(); for (uint i = 0; i < pointCount; i++) { box.addPointToBounds(pointArray[i]); } Sphere sphere; sphere.center = box.center(); sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); nvDebugCheck(allInside(sphere, pointArray, pointCount)); return sphere; } static void computeExtremalPoints(const Vector3 & dir, const Vector3 * pointArray, uint pointCount, Vector3 * minPoint, Vector3 * maxPoint) { nvDebugCheck(pointCount > 0); uint mini = 0; uint maxi = 0; float minDist = FLT_MAX; float maxDist = -FLT_MAX; for (uint i = 0; i < pointCount; i++) { float d = dot(dir, pointArray[i]); if (d < minDist) { minDist = d; mini = i; } if (d > maxDist) { maxDist = d; maxi = i; } } nvDebugCheck(minDist != FLT_MAX); nvDebugCheck(maxDist != -FLT_MAX); *minPoint = pointArray[mini]; *maxPoint = pointArray[maxi]; } // EPOS algorithm based on: // http://www.ep.liu.se/ecp/034/009/ecp083409.pdf Sphere nv::approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount) { nvDebugCheck(pointArray != NULL); nvDebugCheck(pointCount > 0); Vector3 extremalPoints[6]; // Compute 6 extremal points. computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1); computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3); computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5); Sphere sphere = miniBall(extremalPoints, 6); sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); nvDebugCheck(allInside(sphere, pointArray, pointCount)); return sphere; } Sphere nv::approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount) { nvDebugCheck(pointArray != NULL); nvDebugCheck(pointCount > 0); Vector3 extremalPoints[14]; // Compute 14 extremal points. computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1); computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3); computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5); float d = sqrtf(1.0f/3.0f); computeExtremalPoints(Vector3(d, d, d), pointArray, pointCount, extremalPoints+6, extremalPoints+7); computeExtremalPoints(Vector3(-d, d, d), pointArray, pointCount, extremalPoints+8, extremalPoints+9); computeExtremalPoints(Vector3(-d, -d, d), pointArray, pointCount, extremalPoints+10, extremalPoints+11); computeExtremalPoints(Vector3(d, -d, d), pointArray, pointCount, extremalPoints+12, extremalPoints+13); Sphere sphere = miniBall(extremalPoints, 14); sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); nvDebugCheck(allInside(sphere, pointArray, pointCount)); return sphere; }