// This code is in the public domain -- castanyo@yahoo.es #include "Matrix.inl" #include "Vector.inl" #include "nvcore/Array.inl" #include <float.h> #if !NV_CC_MSVC && !NV_OS_ORBIS #include <alloca.h> #endif using namespace nv; // Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise // permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above; // indx[1..n] is an output vector that records the row permutation effected by the partial // pivoting; d is output as -1 depending on whether the number of row interchanges was even // or odd, respectively. This routine is used in combination with lubksb to solve linear equations // or invert a matrix. static bool ludcmp(float **a, int n, int *indx, float *d) { const float TINY = 1.0e-20f; float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row. *d = 1.0; // No row interchanges yet. for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information. float big = 0.0; for (int j = 0; j < n; j++) { big = max(big, fabsf(a[i][j])); } if (big == 0) { return false; // Singular matrix } // No nonzero largest element. vv[i] = 1.0f / big; // Save the scaling. } for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method. for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j. float sum = a[i][j]; for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j]; a[i][j] = sum; } int imax = -1; float big = 0.0; // Initialize for the search for largest pivot element. for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N float sum = a[i][j]; // of equation (2.3.13). for (int k = 0; k < j; k++) { sum -= a[i][k]*a[k][j]; } a[i][j]=sum; float dum = vv[i]*fabs(sum); if (dum >= big) { // Is the figure of merit for the pivot better than the best so far? big = dum; imax = i; } } nvDebugCheck(imax != -1); if (j != imax) { // Do we need to interchange rows? for (int k = 0; k < n; k++) { // Yes, do so... swap(a[imax][k], a[j][k]); } *d = -(*d); // ...and change the parity of d. vv[imax]=vv[j]; // Also interchange the scale factor. } indx[j]=imax; if (a[j][j] == 0.0) a[j][j] = TINY; // If the pivot element is zero the matrix is singular (at least to the precision of the // algorithm). For some applications on singular matrices, it is desirable to substitute // TINY for zero. if (j != n-1) { // Now, finally, divide by the pivot element. float dum = 1.0f / a[j][j]; for (int i = j+1; i < n; i++) a[i][j] *= dum; } } // Go back for the next column in the reduction. return true; } // Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix // A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input // as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector // B, and returns with the solution vector X. a, n, and indx are not modified by this routine // and can be left in place for successive calls with different right-hand sides b. This routine takes // into account the possibility that b will begin with many zero elements, so it is efficient for use // in matrix inversion. static void lubksb(float **a, int n, int *indx, float b[]) { int ii = 0; for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become int ip = indx[i]; // the index of the first nonvanishing element of b. We now float sum = b[ip]; // do the forward substitution, equation (2.3.6). The b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go. if (ii != 0) { for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j]; } else if (sum != 0.0f) { ii = i+1; // A nonzero element was encountered, so from now on we } b[i] = sum; // will have to do the sums in the loop above. } for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7). float sum = b[i]; for (int j = i+1; j < n; j++) { sum -= a[i][j]*b[j]; } b[i] = sum/a[i][i]; // Store a component of the solution vector X. } // All done! } bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x) { nvDebugCheck(x != NULL); float m[4][4]; float *a[4] = {m[0], m[1], m[2], m[3]}; int idx[4]; float d; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { a[x][y] = A(x, y); } } // Create LU decomposition. if (!ludcmp(a, 4, idx, &d)) { // Singular matrix. return false; } // Init solution. *x = b; // Do back substitution. lubksb(a, 4, idx, x->component); return true; } // @@ Not tested. Matrix nv::inverseLU(const Matrix & A) { Vector4 Ai[4]; solveLU(A, Vector4(1, 0, 0, 0), &Ai[0]); solveLU(A, Vector4(0, 1, 0, 0), &Ai[1]); solveLU(A, Vector4(0, 0, 1, 0), &Ai[2]); solveLU(A, Vector4(0, 0, 0, 1), &Ai[3]); return Matrix(Ai[0], Ai[1], Ai[2], Ai[3]); } bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x) { nvDebugCheck(x != NULL); float m[3][3]; float *a[3] = {m[0], m[1], m[2]}; int idx[3]; float d; for (int y = 0; y < 3; y++) { for (int x = 0; x < 3; x++) { a[x][y] = A(x, y); } } // Create LU decomposition. if (!ludcmp(a, 3, idx, &d)) { // Singular matrix. return false; } // Init solution. *x = b; // Do back substitution. lubksb(a, 3, idx, x->component); return true; } bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x) { nvDebugCheck(x != NULL); *x = transform(inverseCramer(A), b); return true; // @@ Return false if determinant(A) == 0 ! } bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x) { nvDebugCheck(x != NULL); const float det = A.determinant(); if (equal(det, 0.0f)) { // @@ Use input epsilon. return false; } Matrix3 Ai = inverseCramer(A); *x = transform(Ai, b); return true; } // Inverse using gaussian elimination. From Jon's code. Matrix nv::inverse(const Matrix & m) { Matrix A = m; Matrix B(identity); int i, j, k; float max, t, det, pivot; det = 1.0; for (i=0; i<4; i++) { /* eliminate in column i, below diag */ max = -1.; for (k=i; k<4; k++) /* find pivot for column i */ if (fabs(A(k, i)) > max) { max = fabs(A(k, i)); j = k; } if (max<=0.) return B; /* if no nonzero pivot, PUNT */ if (j!=i) { /* swap rows i and j */ for (k=i; k<4; k++) swap(A(i, k), A(j, k)); for (k=0; k<4; k++) swap(B(i, k), B(j, k)); det = -det; } pivot = A(i, i); det *= pivot; for (k=i+1; k<4; k++) /* only do elems to right of pivot */ A(i, k) /= pivot; for (k=0; k<4; k++) B(i, k) /= pivot; /* we know that A(i, i) will be set to 1, so don't bother to do it */ for (j=i+1; j<4; j++) { /* eliminate in rows below i */ t = A(j, i); /* we're gonna zero this guy */ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ for (k=0; k<4; k++) B(j, k) -= B(i, k)*t; } } /*---------- backward elimination ----------*/ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ for (j=0; j<i; j++) { /* eliminate in rows above i */ t = A(j, i); /* we're gonna zero this guy */ for (k=0; k<4; k++) /* subtract scaled row i from row j */ B(j, k) -= B(i, k)*t; } } return B; } Matrix3 nv::inverse(const Matrix3 & m) { Matrix3 A = m; Matrix3 B(identity); int i, j, k; float max, t, det, pivot; det = 1.0; for (i=0; i<3; i++) { /* eliminate in column i, below diag */ max = -1.; for (k=i; k<3; k++) /* find pivot for column i */ if (fabs(A(k, i)) > max) { max = fabs(A(k, i)); j = k; } if (max<=0.) return B; /* if no nonzero pivot, PUNT */ if (j!=i) { /* swap rows i and j */ for (k=i; k<3; k++) swap(A(i, k), A(j, k)); for (k=0; k<3; k++) swap(B(i, k), B(j, k)); det = -det; } pivot = A(i, i); det *= pivot; for (k=i+1; k<3; k++) /* only do elems to right of pivot */ A(i, k) /= pivot; for (k=0; k<3; k++) B(i, k) /= pivot; /* we know that A(i, i) will be set to 1, so don't bother to do it */ for (j=i+1; j<3; j++) { /* eliminate in rows below i */ t = A(j, i); /* we're gonna zero this guy */ for (k=i+1; k<3; k++) /* subtract scaled row i from row j */ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ for (k=0; k<3; k++) B(j, k) -= B(i, k)*t; } } /*---------- backward elimination ----------*/ for (i=3-1; i>0; i--) { /* eliminate in column i, above diag */ for (j=0; j<i; j++) { /* eliminate in rows above i */ t = A(j, i); /* we're gonna zero this guy */ for (k=0; k<3; k++) /* subtract scaled row i from row j */ B(j, k) -= B(i, k)*t; } } return B; } #if 0 // Copyright (C) 1999-2004 Michael Garland. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, provided that the above // copyright notice(s) and this permission notice appear in all copies of // the Software and that both the above copyright notice(s) and this // permission notice appear in supporting documentation. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT // OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR // HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL // INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING // FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, // NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION // WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // // Except as contained in this notice, the name of a copyright holder // shall not be used in advertising or otherwise to promote the sale, use // or other dealings in this Software without prior written authorization // of the copyright holder. // Matrix inversion code for 4x4 matrices using Gaussian elimination // with partial pivoting. This is a specialized version of a // procedure originally due to Paul Heckbert <ph@cs.cmu.edu>. // // Returns determinant of A, and B=inverse(A) // If matrix A is singular, returns 0 and leaves trash in B. // #define SWAP(a, b, t) {t = a; a = b; b = t;} double invert(Mat4& B, const Mat4& m) { Mat4 A = m; int i, j, k; double max, t, det, pivot; /*---------- forward elimination ----------*/ for (i=0; i<4; i++) /* put identity matrix in B */ for (j=0; j<4; j++) B(i, j) = (double)(i==j); det = 1.0; for (i=0; i<4; i++) { /* eliminate in column i, below diag */ max = -1.; for (k=i; k<4; k++) /* find pivot for column i */ if (fabs(A(k, i)) > max) { max = fabs(A(k, i)); j = k; } if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */ if (j!=i) { /* swap rows i and j */ for (k=i; k<4; k++) SWAP(A(i, k), A(j, k), t); for (k=0; k<4; k++) SWAP(B(i, k), B(j, k), t); det = -det; } pivot = A(i, i); det *= pivot; for (k=i+1; k<4; k++) /* only do elems to right of pivot */ A(i, k) /= pivot; for (k=0; k<4; k++) B(i, k) /= pivot; /* we know that A(i, i) will be set to 1, so don't bother to do it */ for (j=i+1; j<4; j++) { /* eliminate in rows below i */ t = A(j, i); /* we're gonna zero this guy */ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ for (k=0; k<4; k++) B(j, k) -= B(i, k)*t; } } /*---------- backward elimination ----------*/ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ for (j=0; j<i; j++) { /* eliminate in rows above i */ t = A(j, i); /* we're gonna zero this guy */ for (k=0; k<4; k++) /* subtract scaled row i from row j */ B(j, k) -= B(i, k)*t; } } return det; } #endif // 0