// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" static const unsigned RC_UNSET_HEIGHT = 0xffff; struct rcHeightPatch { inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {} inline ~rcHeightPatch() { rcFree(data); } unsigned short* data; int xmin, ymin, width, height; }; inline float vdot2(const float* a, const float* b) { return a[0]*b[0] + a[2]*b[2]; } inline float vdistSq2(const float* p, const float* q) { const float dx = q[0] - p[0]; const float dy = q[2] - p[2]; return dx*dx + dy*dy; } inline float vdist2(const float* p, const float* q) { return sqrtf(vdistSq2(p,q)); } inline float vcross2(const float* p1, const float* p2, const float* p3) { const float u1 = p2[0] - p1[0]; const float v1 = p2[2] - p1[2]; const float u2 = p3[0] - p1[0]; const float v2 = p3[2] - p1[2]; return u1 * v2 - v1 * u2; } static bool circumCircle(const float* p1, const float* p2, const float* p3, float* c, float& r) { static const float EPS = 1e-6f; // Calculate the circle relative to p1, to avoid some precision issues. const float v1[3] = {0,0,0}; float v2[3], v3[3]; rcVsub(v2, p2,p1); rcVsub(v3, p3,p1); const float cp = vcross2(v1, v2, v3); if (fabsf(cp) > EPS) { const float v1Sq = vdot2(v1,v1); const float v2Sq = vdot2(v2,v2); const float v3Sq = vdot2(v3,v3); c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp); c[1] = 0; c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp); r = vdist2(c, v1); rcVadd(c, c, p1); return true; } rcVcopy(c, p1); r = 0; return false; } static float distPtTri(const float* p, const float* a, const float* b, const float* c) { float v0[3], v1[3], v2[3]; rcVsub(v0, c,a); rcVsub(v1, b,a); rcVsub(v2, p,a); const float dot00 = vdot2(v0, v0); const float dot01 = vdot2(v0, v1); const float dot02 = vdot2(v0, v2); const float dot11 = vdot2(v1, v1); const float dot12 = vdot2(v1, v2); // Compute barycentric coordinates const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); const float u = (dot11 * dot02 - dot01 * dot12) * invDenom; float v = (dot00 * dot12 - dot01 * dot02) * invDenom; // If point lies inside the triangle, return interpolated y-coord. static const float EPS = 1e-4f; if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS) { const float y = a[1] + v0[1]*u + v1[1]*v; return fabsf(y-p[1]); } return FLT_MAX; } static float distancePtSeg(const float* pt, const float* p, const float* q) { float pqx = q[0] - p[0]; float pqy = q[1] - p[1]; float pqz = q[2] - p[2]; float dx = pt[0] - p[0]; float dy = pt[1] - p[1]; float dz = pt[2] - p[2]; float d = pqx*pqx + pqy*pqy + pqz*pqz; float t = pqx*dx + pqy*dy + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dy = p[1] + t*pqy - pt[1]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dy*dy + dz*dz; } static float distancePtSeg2d(const float* pt, const float* p, const float* q) { float pqx = q[0] - p[0]; float pqz = q[2] - p[2]; float dx = pt[0] - p[0]; float dz = pt[2] - p[2]; float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dz*dz; } static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris) { float dmin = FLT_MAX; for (int i = 0; i < ntris; ++i) { const float* va = &verts[tris[i*4+0]*3]; const float* vb = &verts[tris[i*4+1]*3]; const float* vc = &verts[tris[i*4+2]*3]; float d = distPtTri(p, va,vb,vc); if (d < dmin) dmin = d; } if (dmin == FLT_MAX) return -1; return dmin; } static float distToPoly(int nvert, const float* verts, const float* p) { float dmin = FLT_MAX; int i, j, c = 0; for (i = 0, j = nvert-1; i < nvert; j = i++) { const float* vi = &verts[i*3]; const float* vj = &verts[j*3]; if (((vi[2] > p[2]) != (vj[2] > p[2])) && (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) c = !c; dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi)); } return c ? -dmin : dmin; } static unsigned short getHeight(const float fx, const float fy, const float fz, const float /*cs*/, const float ics, const float ch, const int radius, const rcHeightPatch& hp) { int ix = (int)floorf(fx*ics + 0.01f); int iz = (int)floorf(fz*ics + 0.01f); ix = rcClamp(ix-hp.xmin, 0, hp.width - 1); iz = rcClamp(iz-hp.ymin, 0, hp.height - 1); unsigned short h = hp.data[ix+iz*hp.width]; if (h == RC_UNSET_HEIGHT) { // Special case when data might be bad. // Walk adjacent cells in a spiral up to 'radius', and look // for a pixel which has a valid height. int x = 1, z = 0, dx = 1, dz = 0; int maxSize = radius * 2 + 1; int maxIter = maxSize * maxSize - 1; int nextRingIterStart = 8; int nextRingIters = 16; float dmin = FLT_MAX; for (int i = 0; i < maxIter; i++) { const int nx = ix + x; const int nz = iz + z; if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height) { const unsigned short nh = hp.data[nx + nz*hp.width]; if (nh != RC_UNSET_HEIGHT) { const float d = fabsf(nh*ch - fy); if (d < dmin) { h = nh; dmin = d; } } } // We are searching in a grid which looks approximately like this: // __________ // |2 ______ 2| // | |1 __ 1| | // | | |__| | | // | |______| | // |__________| // We want to find the best height as close to the center cell as possible. This means that // if we find a height in one of the neighbor cells to the center, we don't want to // expand further out than the 8 neighbors - we want to limit our search to the closest // of these "rings", but the best height in the ring. // For example, the center is just 1 cell. We checked that at the entrance to the function. // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell. // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which // can be thought of as adding 2 cells around the "center" of each side when we expand the ring. // Here we detect if we are about to enter the next ring, and if we are and we have found // a height, we abort the search. if (i + 1 == nextRingIterStart) { if (h != RC_UNSET_HEIGHT) break; nextRingIterStart += nextRingIters; nextRingIters += 8; } if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z))) { int tmp = dx; dx = -dz; dz = tmp; } x += dx; z += dz; } } return h; } enum EdgeValues { EV_UNDEF = -1, EV_HULL = -2 }; static int findEdge(const int* edges, int nedges, int s, int t) { for (int i = 0; i < nedges; i++) { const int* e = &edges[i*4]; if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s)) return i; } return EV_UNDEF; } static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r) { if (nedges >= maxEdges) { ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges); return EV_UNDEF; } // Add edge if not already in the triangulation. int e = findEdge(edges, nedges, s, t); if (e == EV_UNDEF) { int* edge = &edges[nedges*4]; edge[0] = s; edge[1] = t; edge[2] = l; edge[3] = r; return nedges++; } else { return EV_UNDEF; } } static void updateLeftFace(int* e, int s, int t, int f) { if (e[0] == s && e[1] == t && e[2] == EV_UNDEF) e[2] = f; else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF) e[3] = f; } static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d) { const float a1 = vcross2(a, b, d); const float a2 = vcross2(a, b, c); if (a1*a2 < 0.0f) { float a3 = vcross2(c, d, a); float a4 = a3 + a2 - a1; if (a3 * a4 < 0.0f) return 1; } return 0; } static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1) { for (int i = 0; i < nedges; ++i) { const int s0 = edges[i*4+0]; const int t0 = edges[i*4+1]; // Same or connected edges do not overlap. if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1) continue; if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3])) return true; } return false; } static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e) { static const float EPS = 1e-5f; int* edge = &edges[e*4]; // Cache s and t. int s,t; if (edge[2] == EV_UNDEF) { s = edge[0]; t = edge[1]; } else if (edge[3] == EV_UNDEF) { s = edge[1]; t = edge[0]; } else { // Edge already completed. return; } // Find best point on left of edge. int pt = npts; float c[3] = {0,0,0}; float r = -1; for (int u = 0; u < npts; ++u) { if (u == s || u == t) continue; if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS) { if (r < 0) { // The circle is not updated yet, do it now. pt = u; circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); continue; } const float d = vdist2(c, &pts[u*3]); const float tol = 0.001f; if (d > r*(1+tol)) { // Outside current circumcircle, skip. continue; } else if (d < r*(1-tol)) { // Inside safe circumcircle, update circle. pt = u; circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); } else { // Inside epsilon circum circle, do extra tests to make sure the edge is valid. // s-u and t-u cannot overlap with s-pt nor t-pt if they exists. if (overlapEdges(pts, edges, nedges, s,u)) continue; if (overlapEdges(pts, edges, nedges, t,u)) continue; // Edge is valid. pt = u; circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); } } } // Add new triangle or update edge info if s-t is on hull. if (pt < npts) { // Update face information of edge being completed. updateLeftFace(&edges[e*4], s, t, nfaces); // Add new edge or update face info of old edge. e = findEdge(edges, nedges, pt, s); if (e == EV_UNDEF) addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF); else updateLeftFace(&edges[e*4], pt, s, nfaces); // Add new edge or update face info of old edge. e = findEdge(edges, nedges, t, pt); if (e == EV_UNDEF) addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF); else updateLeftFace(&edges[e*4], t, pt, nfaces); nfaces++; } else { updateLeftFace(&edges[e*4], s, t, EV_HULL); } } static void delaunayHull(rcContext* ctx, const int npts, const float* pts, const int nhull, const int* hull, rcIntArray& tris, rcIntArray& edges) { int nfaces = 0; int nedges = 0; const int maxEdges = npts*10; edges.resize(maxEdges*4); for (int i = 0, j = nhull-1; i < nhull; j=i++) addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF); int currentEdge = 0; while (currentEdge < nedges) { if (edges[currentEdge*4+2] == EV_UNDEF) completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); if (edges[currentEdge*4+3] == EV_UNDEF) completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); currentEdge++; } // Create tris tris.resize(nfaces*4); for (int i = 0; i < nfaces*4; ++i) tris[i] = -1; for (int i = 0; i < nedges; ++i) { const int* e = &edges[i*4]; if (e[3] >= 0) { // Left face int* t = &tris[e[3]*4]; if (t[0] == -1) { t[0] = e[0]; t[1] = e[1]; } else if (t[0] == e[1]) t[2] = e[0]; else if (t[1] == e[0]) t[2] = e[1]; } if (e[2] >= 0) { // Right int* t = &tris[e[2]*4]; if (t[0] == -1) { t[0] = e[1]; t[1] = e[0]; } else if (t[0] == e[0]) t[2] = e[1]; else if (t[1] == e[1]) t[2] = e[0]; } } for (int i = 0; i < tris.size()/4; ++i) { int* t = &tris[i*4]; if (t[0] == -1 || t[1] == -1 || t[2] == -1) { ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]); t[0] = tris[tris.size()-4]; t[1] = tris[tris.size()-3]; t[2] = tris[tris.size()-2]; t[3] = tris[tris.size()-1]; tris.resize(tris.size()-4); --i; } } } // Calculate minimum extend of the polygon. static float polyMinExtent(const float* verts, const int nverts) { float minDist = FLT_MAX; for (int i = 0; i < nverts; i++) { const int ni = (i+1) % nverts; const float* p1 = &verts[i*3]; const float* p2 = &verts[ni*3]; float maxEdgeDist = 0; for (int j = 0; j < nverts; j++) { if (j == i || j == ni) continue; float d = distancePtSeg2d(&verts[j*3], p1,p2); maxEdgeDist = rcMax(maxEdgeDist, d); } minDist = rcMin(minDist, maxEdgeDist); } return rcSqrt(minDist); } // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris) { int start = 0, left = 1, right = nhull-1; // Start from an ear with shortest perimeter. // This tends to favor well formed triangles as starting point. float dmin = FLT_MAX; for (int i = 0; i < nhull; i++) { if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges int pi = prev(i, nhull); int ni = next(i, nhull); const float* pv = &verts[hull[pi]*3]; const float* cv = &verts[hull[i]*3]; const float* nv = &verts[hull[ni]*3]; const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv); if (d < dmin) { start = i; left = ni; right = pi; dmin = d; } } // Add first triangle tris.push(hull[start]); tris.push(hull[left]); tris.push(hull[right]); tris.push(0); // Triangulate the polygon by moving left or right, // depending on which triangle has shorter perimeter. // This heuristic was chose emprically, since it seems // handle tesselated straight edges well. while (next(left, nhull) != right) { // Check to see if se should advance left or right. int nleft = next(left, nhull); int nright = prev(right, nhull); const float* cvleft = &verts[hull[left]*3]; const float* nvleft = &verts[hull[nleft]*3]; const float* cvright = &verts[hull[right]*3]; const float* nvright = &verts[hull[nright]*3]; const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright); const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright); if (dleft < dright) { tris.push(hull[left]); tris.push(hull[nleft]); tris.push(hull[right]); tris.push(0); left = nleft; } else { tris.push(hull[left]); tris.push(hull[nright]); tris.push(hull[right]); tris.push(0); right = nright; } } } inline float getJitterX(const int i) { return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f; } inline float getJitterY(const int i) { return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f; } static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin, const float sampleDist, const float sampleMaxError, const int heightSearchRadius, const rcCompactHeightfield& chf, const rcHeightPatch& hp, float* verts, int& nverts, rcIntArray& tris, rcIntArray& edges, rcIntArray& samples) { static const int MAX_VERTS = 127; static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts). static const int MAX_VERTS_PER_EDGE = 32; float edge[(MAX_VERTS_PER_EDGE+1)*3]; int hull[MAX_VERTS]; int nhull = 0; nverts = nin; for (int i = 0; i < nin; ++i) rcVcopy(&verts[i*3], &in[i*3]); edges.clear(); tris.clear(); const float cs = chf.cs; const float ics = 1.0f/cs; // Calculate minimum extents of the polygon based on input data. float minExtent = polyMinExtent(verts, nverts); // Tessellate outlines. // This is done in separate pass in order to ensure // seamless height values across the ply boundaries. if (sampleDist > 0) { for (int i = 0, j = nin-1; i < nin; j=i++) { const float* vj = &in[j*3]; const float* vi = &in[i*3]; bool swapped = false; // Make sure the segments are always handled in same order // using lexological sort or else there will be seams. if (fabsf(vj[0]-vi[0]) < 1e-6f) { if (vj[2] > vi[2]) { rcSwap(vj,vi); swapped = true; } } else { if (vj[0] > vi[0]) { rcSwap(vj,vi); swapped = true; } } // Create samples along the edge. float dx = vi[0] - vj[0]; float dy = vi[1] - vj[1]; float dz = vi[2] - vj[2]; float d = sqrtf(dx*dx + dz*dz); int nn = 1 + (int)floorf(d/sampleDist); if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1; if (nverts+nn >= MAX_VERTS) nn = MAX_VERTS-1-nverts; for (int k = 0; k <= nn; ++k) { float u = (float)k/(float)nn; float* pos = &edge[k*3]; pos[0] = vj[0] + dx*u; pos[1] = vj[1] + dy*u; pos[2] = vj[2] + dz*u; pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch; } // Simplify samples. int idx[MAX_VERTS_PER_EDGE] = {0,nn}; int nidx = 2; for (int k = 0; k < nidx-1; ) { const int a = idx[k]; const int b = idx[k+1]; const float* va = &edge[a*3]; const float* vb = &edge[b*3]; // Find maximum deviation along the segment. float maxd = 0; int maxi = -1; for (int m = a+1; m < b; ++m) { float dev = distancePtSeg(&edge[m*3],va,vb); if (dev > maxd) { maxd = dev; maxi = m; } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > rcSqr(sampleMaxError)) { for (int m = nidx; m > k; --m) idx[m] = idx[m-1]; idx[k+1] = maxi; nidx++; } else { ++k; } } hull[nhull++] = j; // Add new vertices. if (swapped) { for (int k = nidx-2; k > 0; --k) { rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); hull[nhull++] = nverts; nverts++; } } else { for (int k = 1; k < nidx-1; ++k) { rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); hull[nhull++] = nverts; nverts++; } } } } // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points. if (minExtent < sampleDist*2) { triangulateHull(nverts, verts, nhull, hull, nin, tris); return true; } // Tessellate the base mesh. // We're using the triangulateHull instead of delaunayHull as it tends to // create a bit better triangulation for long thin triangles when there // are no internal points. triangulateHull(nverts, verts, nhull, hull, nin, tris); if (tris.size() == 0) { // Could not triangulate the poly, make sure there is some valid data there. ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts); return true; } if (sampleDist > 0) { // Create sample locations in a grid. float bmin[3], bmax[3]; rcVcopy(bmin, in); rcVcopy(bmax, in); for (int i = 1; i < nin; ++i) { rcVmin(bmin, &in[i*3]); rcVmax(bmax, &in[i*3]); } int x0 = (int)floorf(bmin[0]/sampleDist); int x1 = (int)ceilf(bmax[0]/sampleDist); int z0 = (int)floorf(bmin[2]/sampleDist); int z1 = (int)ceilf(bmax[2]/sampleDist); samples.clear(); for (int z = z0; z < z1; ++z) { for (int x = x0; x < x1; ++x) { float pt[3]; pt[0] = x*sampleDist; pt[1] = (bmax[1]+bmin[1])*0.5f; pt[2] = z*sampleDist; // Make sure the samples are not too close to the edges. if (distToPoly(nin,in,pt) > -sampleDist/2) continue; samples.push(x); samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp)); samples.push(z); samples.push(0); // Not added } } // Add the samples starting from the one that has the most // error. The procedure stops when all samples are added // or when the max error is within treshold. const int nsamples = samples.size()/4; for (int iter = 0; iter < nsamples; ++iter) { if (nverts >= MAX_VERTS) break; // Find sample with most error. float bestpt[3] = {0,0,0}; float bestd = 0; int besti = -1; for (int i = 0; i < nsamples; ++i) { const int* s = &samples[i*4]; if (s[3]) continue; // skip added. float pt[3]; // The sample location is jittered to get rid of some bad triangulations // which are cause by symmetrical data from the grid structure. pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f; pt[1] = s[1]*chf.ch; pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f; float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4); if (d < 0) continue; // did not hit the mesh. if (d > bestd) { bestd = d; besti = i; rcVcopy(bestpt,pt); } } // If the max error is within accepted threshold, stop tesselating. if (bestd <= sampleMaxError || besti == -1) break; // Mark sample as added. samples[besti*4+3] = 1; // Add the new sample point. rcVcopy(&verts[nverts*3],bestpt); nverts++; // Create new triangulation. // TODO: Incremental add instead of full rebuild. edges.clear(); tris.clear(); delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges); } } const int ntris = tris.size()/4; if (ntris > MAX_TRIS) { tris.resize(MAX_TRIS*4); ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS); } return true; } static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf, const unsigned short* poly, const int npoly, const unsigned short* verts, const int bs, rcHeightPatch& hp, rcIntArray& array) { // Note: Reads to the compact heightfield are offset by border size (bs) // since border size offset is already removed from the polymesh vertices. static const int offset[9*2] = { 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0, }; // Find cell closest to a poly vertex int startCellX = 0, startCellY = 0, startSpanIndex = -1; int dmin = RC_UNSET_HEIGHT; for (int j = 0; j < npoly && dmin > 0; ++j) { for (int k = 0; k < 9 && dmin > 0; ++k) { const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0]; const int ay = (int)verts[poly[j]*3+1]; const int az = (int)verts[poly[j]*3+2] + offset[k*2+1]; if (ax < hp.xmin || ax >= hp.xmin+hp.width || az < hp.ymin || az >= hp.ymin+hp.height) continue; const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i) { const rcCompactSpan& s = chf.spans[i]; int d = rcAbs(ay - (int)s.y); if (d < dmin) { startCellX = ax; startCellY = az; startSpanIndex = i; dmin = d; } } } } rcAssert(startSpanIndex != -1); // Find center of the polygon int pcx = 0, pcy = 0; for (int j = 0; j < npoly; ++j) { pcx += (int)verts[poly[j]*3+0]; pcy += (int)verts[poly[j]*3+2]; } pcx /= npoly; pcy /= npoly; // Use seeds array as a stack for DFS array.clear(); array.push(startCellX); array.push(startCellY); array.push(startSpanIndex); int dirs[] = { 0, 1, 2, 3 }; memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height); // DFS to move to the center. Note that we need a DFS here and can not just move // directly towards the center without recording intermediate nodes, even though the polygons // are convex. In very rare we can get stuck due to contour simplification if we do not // record nodes. int cx = -1, cy = -1, ci = -1; while (true) { if (array.size() < 3) { ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center"); break; } ci = array.pop(); cy = array.pop(); cx = array.pop(); if (cx == pcx && cy == pcy) break; // If we are already at the correct X-position, prefer direction // directly towards the center in the Y-axis; otherwise prefer // direction in the X-axis int directDir; if (cx == pcx) directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1); else directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0); // Push the direct dir last so we start with this on next iteration rcSwap(dirs[directDir], dirs[3]); const rcCompactSpan& cs = chf.spans[ci]; for (int i = 0; i < 4; i++) { int dir = dirs[i]; if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue; int newX = cx + rcGetDirOffsetX(dir); int newY = cy + rcGetDirOffsetY(dir); int hpx = newX - hp.xmin; int hpy = newY - hp.ymin; if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height) continue; if (hp.data[hpx+hpy*hp.width] != 0) continue; hp.data[hpx+hpy*hp.width] = 1; array.push(newX); array.push(newY); array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir)); } rcSwap(dirs[directDir], dirs[3]); } array.clear(); // getHeightData seeds are given in coordinates with borders array.push(cx+bs); array.push(cy+bs); array.push(ci); memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); const rcCompactSpan& cs = chf.spans[ci]; hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y; } static void push3(rcIntArray& queue, int v1, int v2, int v3) { queue.resize(queue.size() + 3); queue[queue.size() - 3] = v1; queue[queue.size() - 2] = v2; queue[queue.size() - 1] = v3; } static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf, const unsigned short* poly, const int npoly, const unsigned short* verts, const int bs, rcHeightPatch& hp, rcIntArray& queue, int region) { // Note: Reads to the compact heightfield are offset by border size (bs) // since border size offset is already removed from the polymesh vertices. queue.clear(); // Set all heights to RC_UNSET_HEIGHT. memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); bool empty = true; // We cannot sample from this poly if it was created from polys // of different regions. If it was then it could potentially be overlapping // with polys of that region and the heights sampled here could be wrong. if (region != RC_MULTIPLE_REGS) { // Copy the height from the same region, and mark region borders // as seed points to fill the rest. for (int hy = 0; hy < hp.height; hy++) { int y = hp.ymin + hy + bs; for (int hx = 0; hx < hp.width; hx++) { int x = hp.xmin + hx + bs; const rcCompactCell& c = chf.cells[x + y*chf.width]; for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (s.reg == region) { // Store height hp.data[hx + hy*hp.width] = s.y; empty = false; // If any of the neighbours is not in same region, // add the current location as flood fill start bool border = false; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir); const rcCompactSpan& as = chf.spans[ai]; if (as.reg != region) { border = true; break; } } } if (border) push3(queue, x, y, i); break; } } } } } // if the polygon does not contain any points from the current region (rare, but happens) // or if it could potentially be overlapping polygons of the same region, // then use the center as the seed point. if (empty) seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue); static const int RETRACT_SIZE = 256; int head = 0; // We assume the seed is centered in the polygon, so a BFS to collect // height data will ensure we do not move onto overlapping polygons and // sample wrong heights. while (head*3 < queue.size()) { int cx = queue[head*3+0]; int cy = queue[head*3+1]; int ci = queue[head*3+2]; head++; if (head >= RETRACT_SIZE) { head = 0; if (queue.size() > RETRACT_SIZE*3) memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3)); queue.resize(queue.size()-RETRACT_SIZE*3); } const rcCompactSpan& cs = chf.spans[ci]; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue; const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int hx = ax - hp.xmin - bs; const int hy = ay - hp.ymin - bs; if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height) continue; if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT) continue; const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir); const rcCompactSpan& as = chf.spans[ai]; hp.data[hx + hy*hp.width] = as.y; push3(queue, ax, ay, ai); } } } static unsigned char getEdgeFlags(const float* va, const float* vb, const float* vpoly, const int npoly) { // The flag returned by this function matches dtDetailTriEdgeFlags in Detour. // Figure out if edge (va,vb) is part of the polygon boundary. static const float thrSqr = rcSqr(0.001f); for (int i = 0, j = npoly-1; i < npoly; j=i++) { if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr && distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr) return 1; } return 0; } static unsigned char getTriFlags(const float* va, const float* vb, const float* vc, const float* vpoly, const int npoly) { unsigned char flags = 0; flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0; flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2; flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4; return flags; } /// @par /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, const float sampleDist, const float sampleMaxError, rcPolyMeshDetail& dmesh) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL); if (mesh.nverts == 0 || mesh.npolys == 0) return true; const int nvp = mesh.nvp; const float cs = mesh.cs; const float ch = mesh.ch; const float* orig = mesh.bmin; const int borderSize = mesh.borderSize; const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError)); rcIntArray edges(64); rcIntArray tris(512); rcIntArray arr(512); rcIntArray samples(512); float verts[256*3]; rcHeightPatch hp; int nPolyVerts = 0; int maxhw = 0, maxhh = 0; rcScopedDelete bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP)); if (!bounds) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4); return false; } rcScopedDelete poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP)); if (!poly) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3); return false; } // Find max size for a polygon area. for (int i = 0; i < mesh.npolys; ++i) { const unsigned short* p = &mesh.polys[i*nvp*2]; int& xmin = bounds[i*4+0]; int& xmax = bounds[i*4+1]; int& ymin = bounds[i*4+2]; int& ymax = bounds[i*4+3]; xmin = chf.width; xmax = 0; ymin = chf.height; ymax = 0; for (int j = 0; j < nvp; ++j) { if(p[j] == RC_MESH_NULL_IDX) break; const unsigned short* v = &mesh.verts[p[j]*3]; xmin = rcMin(xmin, (int)v[0]); xmax = rcMax(xmax, (int)v[0]); ymin = rcMin(ymin, (int)v[2]); ymax = rcMax(ymax, (int)v[2]); nPolyVerts++; } xmin = rcMax(0,xmin-1); xmax = rcMin(chf.width,xmax+1); ymin = rcMax(0,ymin-1); ymax = rcMin(chf.height,ymax+1); if (xmin >= xmax || ymin >= ymax) continue; maxhw = rcMax(maxhw, xmax-xmin); maxhh = rcMax(maxhh, ymax-ymin); } hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP); if (!hp.data) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh); return false; } dmesh.nmeshes = mesh.npolys; dmesh.nverts = 0; dmesh.ntris = 0; dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM); if (!dmesh.meshes) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4); return false; } int vcap = nPolyVerts+nPolyVerts/2; int tcap = vcap*2; dmesh.nverts = 0; dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); if (!dmesh.verts) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3); return false; } dmesh.ntris = 0; dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); if (!dmesh.tris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4); return false; } for (int i = 0; i < mesh.npolys; ++i) { const unsigned short* p = &mesh.polys[i*nvp*2]; // Store polygon vertices for processing. int npoly = 0; for (int j = 0; j < nvp; ++j) { if(p[j] == RC_MESH_NULL_IDX) break; const unsigned short* v = &mesh.verts[p[j]*3]; poly[j*3+0] = v[0]*cs; poly[j*3+1] = v[1]*ch; poly[j*3+2] = v[2]*cs; npoly++; } // Get the height data from the area of the polygon. hp.xmin = bounds[i*4+0]; hp.ymin = bounds[i*4+2]; hp.width = bounds[i*4+1]-bounds[i*4+0]; hp.height = bounds[i*4+3]-bounds[i*4+2]; getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]); // Build detail mesh. int nverts = 0; if (!buildPolyDetail(ctx, poly, npoly, sampleDist, sampleMaxError, heightSearchRadius, chf, hp, verts, nverts, tris, edges, samples)) { return false; } // Move detail verts to world space. for (int j = 0; j < nverts; ++j) { verts[j*3+0] += orig[0]; verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary? verts[j*3+2] += orig[2]; } // Offset poly too, will be used to flag checking. for (int j = 0; j < npoly; ++j) { poly[j*3+0] += orig[0]; poly[j*3+1] += orig[1]; poly[j*3+2] += orig[2]; } // Store detail submesh. const int ntris = tris.size()/4; dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts; dmesh.meshes[i*4+1] = (unsigned int)nverts; dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris; dmesh.meshes[i*4+3] = (unsigned int)ntris; // Store vertices, allocate more memory if necessary. if (dmesh.nverts+nverts > vcap) { while (dmesh.nverts+nverts > vcap) vcap += 256; float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); if (!newv) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3); return false; } if (dmesh.nverts) memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts); rcFree(dmesh.verts); dmesh.verts = newv; } for (int j = 0; j < nverts; ++j) { dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0]; dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1]; dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2]; dmesh.nverts++; } // Store triangles, allocate more memory if necessary. if (dmesh.ntris+ntris > tcap) { while (dmesh.ntris+ntris > tcap) tcap += 256; unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); if (!newt) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4); return false; } if (dmesh.ntris) memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris); rcFree(dmesh.tris); dmesh.tris = newt; } for (int j = 0; j < ntris; ++j) { const int* t = &tris[j*4]; dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0]; dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1]; dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2]; dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly); dmesh.ntris++; } } return true; } /// @see rcAllocPolyMeshDetail, rcPolyMeshDetail bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh) { rcAssert(ctx); rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL); int maxVerts = 0; int maxTris = 0; int maxMeshes = 0; for (int i = 0; i < nmeshes; ++i) { if (!meshes[i]) continue; maxVerts += meshes[i]->nverts; maxTris += meshes[i]->ntris; maxMeshes += meshes[i]->nmeshes; } mesh.nmeshes = 0; mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM); if (!mesh.meshes) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4); return false; } mesh.ntris = 0; mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM); if (!mesh.tris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4); return false; } mesh.nverts = 0; mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM); if (!mesh.verts) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3); return false; } // Merge datas. for (int i = 0; i < nmeshes; ++i) { rcPolyMeshDetail* dm = meshes[i]; if (!dm) continue; for (int j = 0; j < dm->nmeshes; ++j) { unsigned int* dst = &mesh.meshes[mesh.nmeshes*4]; unsigned int* src = &dm->meshes[j*4]; dst[0] = (unsigned int)mesh.nverts+src[0]; dst[1] = src[1]; dst[2] = (unsigned int)mesh.ntris+src[2]; dst[3] = src[3]; mesh.nmeshes++; } for (int k = 0; k < dm->nverts; ++k) { rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]); mesh.nverts++; } for (int k = 0; k < dm->ntris; ++k) { mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0]; mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1]; mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2]; mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3]; mesh.ntris++; } } return true; }