// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" static int getCornerHeight(int x, int y, int i, int dir, const rcCompactHeightfield& chf, bool& isBorderVertex) { const rcCompactSpan& s = chf.spans[i]; int ch = (int)s.y; int dirp = (dir+1) & 0x3; unsigned int regs[4] = {0,0,0,0}; // Combine region and area codes in order to prevent // border vertices which are in between two areas to be removed. regs[0] = chf.spans[i].reg | (chf.areas[i] << 16); if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); const rcCompactSpan& as = chf.spans[ai]; ch = rcMax(ch, (int)as.y); regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16); if (rcGetCon(as, dirp) != RC_NOT_CONNECTED) { const int ax2 = ax + rcGetDirOffsetX(dirp); const int ay2 = ay + rcGetDirOffsetY(dirp); const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp); const rcCompactSpan& as2 = chf.spans[ai2]; ch = rcMax(ch, (int)as2.y); regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); } } if (rcGetCon(s, dirp) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dirp); const int ay = y + rcGetDirOffsetY(dirp); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp); const rcCompactSpan& as = chf.spans[ai]; ch = rcMax(ch, (int)as.y); regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16); if (rcGetCon(as, dir) != RC_NOT_CONNECTED) { const int ax2 = ax + rcGetDirOffsetX(dir); const int ay2 = ay + rcGetDirOffsetY(dir); const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir); const rcCompactSpan& as2 = chf.spans[ai2]; ch = rcMax(ch, (int)as2.y); regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); } } // Check if the vertex is special edge vertex, these vertices will be removed later. for (int j = 0; j < 4; ++j) { const int a = j; const int b = (j+1) & 0x3; const int c = (j+2) & 0x3; const int d = (j+3) & 0x3; // The vertex is a border vertex there are two same exterior cells in a row, // followed by two interior cells and none of the regions are out of bounds. const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b]; const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0; const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16); const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0; if (twoSameExts && twoInts && intsSameArea && noZeros) { isBorderVertex = true; break; } } return ch; } static void walkContour(int x, int y, int i, rcCompactHeightfield& chf, unsigned char* flags, rcIntArray& points) { // Choose the first non-connected edge unsigned char dir = 0; while ((flags[i] & (1 << dir)) == 0) dir++; unsigned char startDir = dir; int starti = i; const unsigned char area = chf.areas[i]; int iter = 0; while (++iter < 40000) { if (flags[i] & (1 << dir)) { // Choose the edge corner bool isBorderVertex = false; bool isAreaBorder = false; int px = x; int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex); int pz = y; switch(dir) { case 0: pz++; break; case 1: px++; pz++; break; case 2: px++; break; } int r = 0; const rcCompactSpan& s = chf.spans[i]; if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); r = (int)chf.spans[ai].reg; if (area != chf.areas[ai]) isAreaBorder = true; } if (isBorderVertex) r |= RC_BORDER_VERTEX; if (isAreaBorder) r |= RC_AREA_BORDER; points.push(px); points.push(py); points.push(pz); points.push(r); flags[i] &= ~(1 << dir); // Remove visited edges dir = (dir+1) & 0x3; // Rotate CW } else { int ni = -1; const int nx = x + rcGetDirOffsetX(dir); const int ny = y + rcGetDirOffsetY(dir); const rcCompactSpan& s = chf.spans[i]; if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; ni = (int)nc.index + rcGetCon(s, dir); } if (ni == -1) { // Should not happen. return; } x = nx; y = ny; i = ni; dir = (dir+3) & 0x3; // Rotate CCW } if (starti == i && startDir == dir) { break; } } } static float distancePtSeg(const int x, const int z, const int px, const int pz, const int qx, const int qz) { float pqx = (float)(qx - px); float pqz = (float)(qz - pz); float dx = (float)(x - px); float dz = (float)(z - pz); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dz = pz + t*pqz - z; return dx*dx + dz*dz; } static void simplifyContour(rcIntArray& points, rcIntArray& simplified, const float maxError, const int maxEdgeLen, const int buildFlags) { // Add initial points. bool hasConnections = false; for (int i = 0; i < points.size(); i += 4) { if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0) { hasConnections = true; break; } } if (hasConnections) { // The contour has some portals to other regions. // Add a new point to every location where the region changes. for (int i = 0, ni = points.size()/4; i < ni; ++i) { int ii = (i+1) % ni; const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK); const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER); if (differentRegs || areaBorders) { simplified.push(points[i*4+0]); simplified.push(points[i*4+1]); simplified.push(points[i*4+2]); simplified.push(i); } } } if (simplified.size() == 0) { // If there is no connections at all, // create some initial points for the simplification process. // Find lower-left and upper-right vertices of the contour. int llx = points[0]; int lly = points[1]; int llz = points[2]; int lli = 0; int urx = points[0]; int ury = points[1]; int urz = points[2]; int uri = 0; for (int i = 0; i < points.size(); i += 4) { int x = points[i+0]; int y = points[i+1]; int z = points[i+2]; if (x < llx || (x == llx && z < llz)) { llx = x; lly = y; llz = z; lli = i/4; } if (x > urx || (x == urx && z > urz)) { urx = x; ury = y; urz = z; uri = i/4; } } simplified.push(llx); simplified.push(lly); simplified.push(llz); simplified.push(lli); simplified.push(urx); simplified.push(ury); simplified.push(urz); simplified.push(uri); } // Add points until all raw points are within // error tolerance to the simplified shape. const int pn = points.size()/4; for (int i = 0; i < simplified.size()/4; ) { int ii = (i+1) % (simplified.size()/4); int ax = simplified[i*4+0]; int az = simplified[i*4+2]; int ai = simplified[i*4+3]; int bx = simplified[ii*4+0]; int bz = simplified[ii*4+2]; int bi = simplified[ii*4+3]; // Find maximum deviation from the segment. float maxd = 0; int maxi = -1; int ci, cinc, endi; // Traverse the segment in lexilogical order so that the // max deviation is calculated similarly when traversing // opposite segments. if (bx > ax || (bx == ax && bz > az)) { cinc = 1; ci = (ai+cinc) % pn; endi = bi; } else { cinc = pn-1; ci = (bi+cinc) % pn; endi = ai; rcSwap(ax, bx); rcSwap(az, bz); } // Tessellate only outer edges or edges between areas. if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 || (points[ci*4+3] & RC_AREA_BORDER)) { while (ci != endi) { float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz); if (d > maxd) { maxd = d; maxi = ci; } ci = (ci+cinc) % pn; } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > (maxError*maxError)) { // Add space for the new point. simplified.resize(simplified.size()+4); const int n = simplified.size()/4; for (int j = n-1; j > i; --j) { simplified[j*4+0] = simplified[(j-1)*4+0]; simplified[j*4+1] = simplified[(j-1)*4+1]; simplified[j*4+2] = simplified[(j-1)*4+2]; simplified[j*4+3] = simplified[(j-1)*4+3]; } // Add the point. simplified[(i+1)*4+0] = points[maxi*4+0]; simplified[(i+1)*4+1] = points[maxi*4+1]; simplified[(i+1)*4+2] = points[maxi*4+2]; simplified[(i+1)*4+3] = maxi; } else { ++i; } } // Split too long edges. if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0) { for (int i = 0; i < simplified.size()/4; ) { const int ii = (i+1) % (simplified.size()/4); const int ax = simplified[i*4+0]; const int az = simplified[i*4+2]; const int ai = simplified[i*4+3]; const int bx = simplified[ii*4+0]; const int bz = simplified[ii*4+2]; const int bi = simplified[ii*4+3]; // Find maximum deviation from the segment. int maxi = -1; int ci = (ai+1) % pn; // Tessellate only outer edges or edges between areas. bool tess = false; // Wall edges. if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0) tess = true; // Edges between areas. if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER)) tess = true; if (tess) { int dx = bx - ax; int dz = bz - az; if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen) { // Round based on the segments in lexilogical order so that the // max tesselation is consistent regardles in which direction // segments are traversed. const int n = bi < ai ? (bi+pn - ai) : (bi - ai); if (n > 1) { if (bx > ax || (bx == ax && bz > az)) maxi = (ai + n/2) % pn; else maxi = (ai + (n+1)/2) % pn; } } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1) { // Add space for the new point. simplified.resize(simplified.size()+4); const int n = simplified.size()/4; for (int j = n-1; j > i; --j) { simplified[j*4+0] = simplified[(j-1)*4+0]; simplified[j*4+1] = simplified[(j-1)*4+1]; simplified[j*4+2] = simplified[(j-1)*4+2]; simplified[j*4+3] = simplified[(j-1)*4+3]; } // Add the point. simplified[(i+1)*4+0] = points[maxi*4+0]; simplified[(i+1)*4+1] = points[maxi*4+1]; simplified[(i+1)*4+2] = points[maxi*4+2]; simplified[(i+1)*4+3] = maxi; } else { ++i; } } } for (int i = 0; i < simplified.size()/4; ++i) { // The edge vertex flag is take from the current raw point, // and the neighbour region is take from the next raw point. const int ai = (simplified[i*4+3]+1) % pn; const int bi = simplified[i*4+3]; simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX); } } static int calcAreaOfPolygon2D(const int* verts, const int nverts) { int area = 0; for (int i = 0, j = nverts-1; i < nverts; j=i++) { const int* vi = &verts[i*4]; const int* vj = &verts[j*4]; area += vi[0] * vj[2] - vj[0] * vi[2]; } return (area+1) / 2; } // TODO: these are the same as in RecastMesh.cpp, consider using the same. // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } inline int area2(const int* a, const int* b, const int* c) { return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); } // Exclusive or: true iff exactly one argument is true. // The arguments are negated to ensure that they are 0/1 // values. Then the bitwise Xor operator may apply. // (This idea is due to Michael Baldwin.) inline bool xorb(bool x, bool y) { return !x ^ !y; } // Returns true iff c is strictly to the left of the directed // line through a to b. inline bool left(const int* a, const int* b, const int* c) { return area2(a, b, c) < 0; } inline bool leftOn(const int* a, const int* b, const int* c) { return area2(a, b, c) <= 0; } inline bool collinear(const int* a, const int* b, const int* c) { return area2(a, b, c) == 0; } // Returns true iff ab properly intersects cd: they share // a point interior to both segments. The properness of the // intersection is ensured by using strict leftness. static bool intersectProp(const int* a, const int* b, const int* c, const int* d) { // Eliminate improper cases. if (collinear(a,b,c) || collinear(a,b,d) || collinear(c,d,a) || collinear(c,d,b)) return false; return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); } // Returns T iff (a,b,c) are collinear and point c lies // on the closed segement ab. static bool between(const int* a, const int* b, const int* c) { if (!collinear(a, b, c)) return false; // If ab not vertical, check betweenness on x; else on y. if (a[0] != b[0]) return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); else return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); } // Returns true iff segments ab and cd intersect, properly or improperly. static bool intersect(const int* a, const int* b, const int* c, const int* d) { if (intersectProp(a, b, c, d)) return true; else if (between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b)) return true; else return false; } static bool vequal(const int* a, const int* b) { return a[0] == b[0] && a[2] == b[2]; } static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts) { // For each edge (k,k+1) of P for (int k = 0; k < n; k++) { int k1 = next(k, n); // Skip edges incident to i. if (i == k || i == k1) continue; const int* p0 = &verts[k * 4]; const int* p1 = &verts[k1 * 4]; if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) continue; if (intersect(d0, d1, p0, p1)) return true; } return false; } static bool inCone(int i, int n, const int* verts, const int* pj) { const int* pi = &verts[i * 4]; const int* pi1 = &verts[next(i, n) * 4]; const int* pin1 = &verts[prev(i, n) * 4]; // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. if (leftOn(pin1, pi, pi1)) return left(pi, pj, pin1) && left(pj, pi, pi1); // Assume (i-1,i,i+1) not collinear. // else P[i] is reflex. return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); } static void removeDegenerateSegments(rcIntArray& simplified) { // Remove adjacent vertices which are equal on xz-plane, // or else the triangulator will get confused. int npts = simplified.size()/4; for (int i = 0; i < npts; ++i) { int ni = next(i, npts); if (vequal(&simplified[i*4], &simplified[ni*4])) { // Degenerate segment, remove. for (int j = i; j < simplified.size()/4-1; ++j) { simplified[j*4+0] = simplified[(j+1)*4+0]; simplified[j*4+1] = simplified[(j+1)*4+1]; simplified[j*4+2] = simplified[(j+1)*4+2]; simplified[j*4+3] = simplified[(j+1)*4+3]; } simplified.resize(simplified.size()-4); npts--; } } } static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) { const int maxVerts = ca.nverts + cb.nverts + 2; int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM); if (!verts) return false; int nv = 0; // Copy contour A. for (int i = 0; i <= ca.nverts; ++i) { int* dst = &verts[nv*4]; const int* src = &ca.verts[((ia+i)%ca.nverts)*4]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; nv++; } // Copy contour B for (int i = 0; i <= cb.nverts; ++i) { int* dst = &verts[nv*4]; const int* src = &cb.verts[((ib+i)%cb.nverts)*4]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; nv++; } rcFree(ca.verts); ca.verts = verts; ca.nverts = nv; rcFree(cb.verts); cb.verts = 0; cb.nverts = 0; return true; } struct rcContourHole { rcContour* contour; int minx, minz, leftmost; }; struct rcContourRegion { rcContour* outline; rcContourHole* holes; int nholes; }; struct rcPotentialDiagonal { int vert; int dist; }; // Finds the lowest leftmost vertex of a contour. static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost) { *minx = contour->verts[0]; *minz = contour->verts[2]; *leftmost = 0; for (int i = 1; i < contour->nverts; i++) { const int x = contour->verts[i*4+0]; const int z = contour->verts[i*4+2]; if (x < *minx || (x == *minx && z < *minz)) { *minx = x; *minz = z; *leftmost = i; } } } static int compareHoles(const void* va, const void* vb) { const rcContourHole* a = (const rcContourHole*)va; const rcContourHole* b = (const rcContourHole*)vb; if (a->minx == b->minx) { if (a->minz < b->minz) return -1; if (a->minz > b->minz) return 1; } else { if (a->minx < b->minx) return -1; if (a->minx > b->minx) return 1; } return 0; } static int compareDiagDist(const void* va, const void* vb) { const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va; const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb; if (a->dist < b->dist) return -1; if (a->dist > b->dist) return 1; return 0; } static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region) { // Sort holes from left to right. for (int i = 0; i < region.nholes; i++) findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost); qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles); int maxVerts = region.outline->nverts; for (int i = 0; i < region.nholes; i++) maxVerts += region.holes[i].contour->nverts; rcScopedDelete diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP)); if (!diags) { ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts); return; } rcContour* outline = region.outline; // Merge holes into the outline one by one. for (int i = 0; i < region.nholes; i++) { rcContour* hole = region.holes[i].contour; int index = -1; int bestVertex = region.holes[i].leftmost; for (int iter = 0; iter < hole->nverts; iter++) { // Find potential diagonals. // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline. // ..o j-1 // | // | * best // | // j o-----o j+1 // : int ndiags = 0; const int* corner = &hole->verts[bestVertex*4]; for (int j = 0; j < outline->nverts; j++) { if (inCone(j, outline->nverts, outline->verts, corner)) { int dx = outline->verts[j*4+0] - corner[0]; int dz = outline->verts[j*4+2] - corner[2]; diags[ndiags].vert = j; diags[ndiags].dist = dx*dx + dz*dz; ndiags++; } } // Sort potential diagonals by distance, we want to make the connection as short as possible. qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist); // Find a diagonal that is not intersecting the outline not the remaining holes. index = -1; for (int j = 0; j < ndiags; j++) { const int* pt = &outline->verts[diags[j].vert*4]; bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts); for (int k = i; k < region.nholes && !intersect; k++) intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts); if (!intersect) { index = diags[j].vert; break; } } // If found non-intersecting diagonal, stop looking. if (index != -1) break; // All the potential diagonals for the current vertex were intersecting, try next vertex. bestVertex = (bestVertex + 1) % hole->nverts; } if (index == -1) { ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole); continue; } if (!mergeContours(*region.outline, *hole, index, bestVertex)) { ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole); continue; } } } /// @par /// /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen /// parameters control how closely the simplified contours will match the raw contours. /// /// Simplified contours are generated such that the vertices for portals between areas match up. /// (They are considered mandatory vertices.) /// /// Setting @p maxEdgeLength to zero will disabled the edge length feature. /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, const float maxError, const int maxEdgeLen, rcContourSet& cset, const int buildFlags) { rcAssert(ctx); const int w = chf.width; const int h = chf.height; const int borderSize = chf.borderSize; rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS); rcVcopy(cset.bmin, chf.bmin); rcVcopy(cset.bmax, chf.bmax); if (borderSize > 0) { // If the heightfield was build with bordersize, remove the offset. const float pad = borderSize*chf.cs; cset.bmin[0] += pad; cset.bmin[2] += pad; cset.bmax[0] -= pad; cset.bmax[2] -= pad; } cset.cs = chf.cs; cset.ch = chf.ch; cset.width = chf.width - chf.borderSize*2; cset.height = chf.height - chf.borderSize*2; cset.borderSize = chf.borderSize; cset.maxError = maxError; int maxContours = rcMax((int)chf.maxRegions, 8); cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); if (!cset.conts) return false; cset.nconts = 0; rcScopedDelete flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP)); if (!flags) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount); return false; } ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); // Mark boundaries. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { unsigned char res = 0; const rcCompactSpan& s = chf.spans[i]; if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG)) { flags[i] = 0; continue; } for (int dir = 0; dir < 4; ++dir) { unsigned short r = 0; if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); r = chf.spans[ai].reg; } if (r == chf.spans[i].reg) res |= (1 << dir); } flags[i] = res ^ 0xf; // Inverse, mark non connected edges. } } } ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); rcIntArray verts(256); rcIntArray simplified(64); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (flags[i] == 0 || flags[i] == 0xf) { flags[i] = 0; continue; } const unsigned short reg = chf.spans[i].reg; if (!reg || (reg & RC_BORDER_REG)) continue; const unsigned char area = chf.areas[i]; verts.resize(0); simplified.resize(0); ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); walkContour(x, y, i, chf, flags, verts); ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags); removeDegenerateSegments(simplified); ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); // Store region->contour remap info. // Create contour. if (simplified.size()/4 >= 3) { if (cset.nconts >= maxContours) { // Allocate more contours. // This happens when a region has holes. const int oldMax = maxContours; maxContours *= 2; rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); for (int j = 0; j < cset.nconts; ++j) { newConts[j] = cset.conts[j]; // Reset source pointers to prevent data deletion. cset.conts[j].verts = 0; cset.conts[j].rverts = 0; } rcFree(cset.conts); cset.conts = newConts; ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours); } rcContour* cont = &cset.conts[cset.nconts++]; cont->nverts = simplified.size()/4; cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM); if (!cont->verts) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts); return false; } memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4); if (borderSize > 0) { // If the heightfield was build with bordersize, remove the offset. for (int j = 0; j < cont->nverts; ++j) { int* v = &cont->verts[j*4]; v[0] -= borderSize; v[2] -= borderSize; } } cont->nrverts = verts.size()/4; cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM); if (!cont->rverts) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts); return false; } memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4); if (borderSize > 0) { // If the heightfield was build with bordersize, remove the offset. for (int j = 0; j < cont->nrverts; ++j) { int* v = &cont->rverts[j*4]; v[0] -= borderSize; v[2] -= borderSize; } } cont->reg = reg; cont->area = area; } } } } // Merge holes if needed. if (cset.nconts > 0) { // Calculate winding of all polygons. rcScopedDelete winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP)); if (!winding) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts); return false; } int nholes = 0; for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // If the contour is wound backwards, it is a hole. winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; if (winding[i] < 0) nholes++; } if (nholes > 0) { // Collect outline contour and holes contours per region. // We assume that there is one outline and multiple holes. const int nregions = chf.maxRegions+1; rcScopedDelete regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP)); if (!regions) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions); return false; } memset(regions, 0, sizeof(rcContourRegion)*nregions); rcScopedDelete holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP)); if (!holes) { ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts); return false; } memset(holes, 0, sizeof(rcContourHole)*cset.nconts); for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // Positively would contours are outlines, negative holes. if (winding[i] > 0) { if (regions[cont.reg].outline) ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg); regions[cont.reg].outline = &cont; } else { regions[cont.reg].nholes++; } } int index = 0; for (int i = 0; i < nregions; i++) { if (regions[i].nholes > 0) { regions[i].holes = &holes[index]; index += regions[i].nholes; regions[i].nholes = 0; } } for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; rcContourRegion& reg = regions[cont.reg]; if (winding[i] < 0) reg.holes[reg.nholes++].contour = &cont; } // Finally merge each regions holes into the outline. for (int i = 0; i < nregions; i++) { rcContourRegion& reg = regions[i]; if (!reg.nholes) continue; if (reg.outline) { mergeRegionHoles(ctx, reg); } else { // The region does not have an outline. // This can happen if the contour becaomes selfoverlapping because of // too aggressive simplification settings. ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i); } } } } return true; }