// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef RECASTALLOC_H #define RECASTALLOC_H #include #include #include "RecastAssert.h" /// Provides hint values to the memory allocator on how long the /// memory is expected to be used. enum rcAllocHint { RC_ALLOC_PERM, ///< Memory will persist after a function call. RC_ALLOC_TEMP ///< Memory used temporarily within a function. }; /// A memory allocation function. // @param[in] size The size, in bytes of memory, to allocate. // @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use. // @return A pointer to the beginning of the allocated memory block, or null if the allocation failed. /// @see rcAllocSetCustom typedef void* (rcAllocFunc)(size_t size, rcAllocHint hint); /// A memory deallocation function. /// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc. /// @see rcAllocSetCustom typedef void (rcFreeFunc)(void* ptr); /// Sets the base custom allocation functions to be used by Recast. /// @param[in] allocFunc The memory allocation function to be used by #rcAlloc /// @param[in] freeFunc The memory de-allocation function to be used by #rcFree void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc); /// Allocates a memory block. /// @param[in] size The size, in bytes of memory, to allocate. /// @param[in] hint A hint to the allocator on how long the memory is expected to be in use. /// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed. /// @see rcFree void* rcAlloc(size_t size, rcAllocHint hint); /// Deallocates a memory block. /// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc. /// @see rcAlloc void rcFree(void* ptr); /// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use). /// rcNewTag is a dummy type used to differentiate our operator from the STL one, in case users import both Recast /// and STL. struct rcNewTag {}; inline void* operator new(size_t, const rcNewTag&, void* p) { return p; } inline void operator delete(void*, const rcNewTag&, void*) {} /// Signed to avoid warnnings when comparing to int loop indexes, and common error with comparing to zero. /// MSVC2010 has a bug where ssize_t is unsigned (!!!). typedef intptr_t rcSizeType; #define RC_SIZE_MAX INTPTR_MAX /// Macros to hint to the compiler about the likeliest branch. Please add a benchmark that demonstrates a performance /// improvement before introducing use cases. #if defined(__GNUC__) || defined(__clang__) #define rcLikely(x) __builtin_expect((x), true) #define rcUnlikely(x) __builtin_expect((x), false) #else #define rcLikely(x) (x) #define rcUnlikely(x) (x) #endif /// Variable-sized storage type. Mimics the interface of std::vector with some notable differences: /// * Uses rcAlloc()/rcFree() to handle storage. /// * No support for a custom allocator. /// * Uses signed size instead of size_t to avoid warnings in for loops: "for (int i = 0; i < foo.size(); i++)" /// * Omits methods of limited utility: insert/erase, (bad performance), at (we don't use exceptions), operator=. /// * assign() and the pre-sizing constructor follow C++11 semantics -- they don't construct a temporary if no value is provided. /// * push_back() and resize() support adding values from the current vector. Range-based constructors and assign(begin, end) do not. /// * No specialization for bool. template class rcVectorBase { rcSizeType m_size; rcSizeType m_cap; T* m_data; // Constructs a T at the give address with either the copy constructor or the default. static void construct(T* p, const T& v) { ::new(rcNewTag(), (void*)p) T(v); } static void construct(T* p) { ::new(rcNewTag(), (void*)p) T; } static void construct_range(T* begin, T* end); static void construct_range(T* begin, T* end, const T& value); static void copy_range(T* dst, const T* begin, const T* end); void destroy_range(rcSizeType begin, rcSizeType end); // Creates an array of the given size, copies all of this vector's data into it, and returns it. T* allocate_and_copy(rcSizeType size); void resize_impl(rcSizeType size, const T* value); // Requires: min_capacity > m_cap. rcSizeType get_new_capacity(rcSizeType min_capacity); public: typedef rcSizeType size_type; typedef T value_type; rcVectorBase() : m_size(0), m_cap(0), m_data(0) {}; rcVectorBase(const rcVectorBase& other) : m_size(0), m_cap(0), m_data(0) { assign(other.begin(), other.end()); } explicit rcVectorBase(rcSizeType count) : m_size(0), m_cap(0), m_data(0) { resize(count); } rcVectorBase(rcSizeType count, const T& value) : m_size(0), m_cap(0), m_data(0) { resize(count, value); } rcVectorBase(const T* begin, const T* end) : m_size(0), m_cap(0), m_data(0) { assign(begin, end); } ~rcVectorBase() { destroy_range(0, m_size); rcFree(m_data); } // Unlike in std::vector, we return a bool to indicate whether the alloc was successful. bool reserve(rcSizeType size); void assign(rcSizeType count, const T& value) { clear(); resize(count, value); } void assign(const T* begin, const T* end); void resize(rcSizeType size) { resize_impl(size, NULL); } void resize(rcSizeType size, const T& value) { resize_impl(size, &value); } // Not implemented as resize(0) because resize requires T to be default-constructible. void clear() { destroy_range(0, m_size); m_size = 0; } void push_back(const T& value); void pop_back() { rcAssert(m_size > 0); back().~T(); m_size--; } rcSizeType size() const { return m_size; } rcSizeType capacity() const { return m_cap; } bool empty() const { return size() == 0; } const T& operator[](rcSizeType i) const { rcAssert(i >= 0 && i < m_size); return m_data[i]; } T& operator[](rcSizeType i) { rcAssert(i >= 0 && i < m_size); return m_data[i]; } const T& front() const { rcAssert(m_size); return m_data[0]; } T& front() { rcAssert(m_size); return m_data[0]; } const T& back() const { rcAssert(m_size); return m_data[m_size - 1]; }; T& back() { rcAssert(m_size); return m_data[m_size - 1]; }; const T* data() const { return m_data; } T* data() { return m_data; } T* begin() { return m_data; } T* end() { return m_data + m_size; } const T* begin() const { return m_data; } const T* end() const { return m_data + m_size; } void swap(rcVectorBase& other); // Explicitly deleted. rcVectorBase& operator=(const rcVectorBase& other); }; template bool rcVectorBase::reserve(rcSizeType count) { if (count <= m_cap) { return true; } T* new_data = allocate_and_copy(count); if (!new_data) { return false; } destroy_range(0, m_size); rcFree(m_data); m_data = new_data; m_cap = count; return true; } template T* rcVectorBase::allocate_and_copy(rcSizeType size) { rcAssert(RC_SIZE_MAX / static_cast(sizeof(T)) >= size); T* new_data = static_cast(rcAlloc(sizeof(T) * size, H)); if (new_data) { copy_range(new_data, m_data, m_data + m_size); } return new_data; } template void rcVectorBase::assign(const T* begin, const T* end) { clear(); reserve(end - begin); m_size = end - begin; copy_range(m_data, begin, end); } template void rcVectorBase::push_back(const T& value) { // rcLikely increases performance by ~50% on BM_rcVector_PushPreallocated, // and by ~2-5% on BM_rcVector_Push. if (rcLikely(m_size < m_cap)) { construct(m_data + m_size++, value); return; } const rcSizeType new_cap = get_new_capacity(m_cap + 1); T* data = allocate_and_copy(new_cap); // construct between allocate and destroy+free in case value is // in this vector. construct(data + m_size, value); destroy_range(0, m_size); m_size++; m_cap = new_cap; rcFree(m_data); m_data = data; } template rcSizeType rcVectorBase::get_new_capacity(rcSizeType min_capacity) { rcAssert(min_capacity <= RC_SIZE_MAX); if (rcUnlikely(m_cap >= RC_SIZE_MAX / 2)) return RC_SIZE_MAX; return 2 * m_cap > min_capacity ? 2 * m_cap : min_capacity; } template void rcVectorBase::resize_impl(rcSizeType size, const T* value) { if (size < m_size) { destroy_range(size, m_size); m_size = size; } else if (size > m_size) { if (size <= m_cap) { if (value) { construct_range(m_data + m_size, m_data + size, *value); } else { construct_range(m_data + m_size, m_data + size); } m_size = size; } else { const rcSizeType new_cap = get_new_capacity(size); T* new_data = allocate_and_copy(new_cap); // We defer deconstructing/freeing old data until after constructing // new elements in case "value" is there. if (value) { construct_range(new_data + m_size, new_data + size, *value); } else { construct_range(new_data + m_size, new_data + size); } destroy_range(0, m_size); rcFree(m_data); m_data = new_data; m_cap = new_cap; m_size = size; } } } template void rcVectorBase::swap(rcVectorBase& other) { // TODO: Reorganize headers so we can use rcSwap here. rcSizeType tmp_cap = other.m_cap; rcSizeType tmp_size = other.m_size; T* tmp_data = other.m_data; other.m_cap = m_cap; other.m_size = m_size; other.m_data = m_data; m_cap = tmp_cap; m_size = tmp_size; m_data = tmp_data; } // static template void rcVectorBase::construct_range(T* begin, T* end) { for (T* p = begin; p < end; p++) { construct(p); } } // static template void rcVectorBase::construct_range(T* begin, T* end, const T& value) { for (T* p = begin; p < end; p++) { construct(p, value); } } // static template void rcVectorBase::copy_range(T* dst, const T* begin, const T* end) { for (rcSizeType i = 0 ; i < end - begin; i++) { construct(dst + i, begin[i]); } } template void rcVectorBase::destroy_range(rcSizeType begin, rcSizeType end) { for (rcSizeType i = begin; i < end; i++) { m_data[i].~T(); } } template class rcTempVector : public rcVectorBase { typedef rcVectorBase Base; public: rcTempVector() : Base() {} explicit rcTempVector(rcSizeType size) : Base(size) {} rcTempVector(rcSizeType size, const T& value) : Base(size, value) {} rcTempVector(const rcTempVector& other) : Base(other) {} rcTempVector(const T* begin, const T* end) : Base(begin, end) {} }; template class rcPermVector : public rcVectorBase { typedef rcVectorBase Base; public: rcPermVector() : Base() {} explicit rcPermVector(rcSizeType size) : Base(size) {} rcPermVector(rcSizeType size, const T& value) : Base(size, value) {} rcPermVector(const rcPermVector& other) : Base(other) {} rcPermVector(const T* begin, const T* end) : Base(begin, end) {} }; /// Legacy class. Prefer rcVector. class rcIntArray { rcTempVector m_impl; public: rcIntArray() {} rcIntArray(int n) : m_impl(n, 0) {} void push(int item) { m_impl.push_back(item); } void resize(int size) { m_impl.resize(size); } void clear() { m_impl.clear(); } int pop() { int v = m_impl.back(); m_impl.pop_back(); return v; } int size() const { return static_cast(m_impl.size()); } int& operator[](int index) { return m_impl[index]; } int operator[](int index) const { return m_impl[index]; } }; /// A simple helper class used to delete an array when it goes out of scope. /// @note This class is rarely if ever used by the end user. template class rcScopedDelete { T* ptr; public: /// Constructs an instance with a null pointer. inline rcScopedDelete() : ptr(0) {} /// Constructs an instance with the specified pointer. /// @param[in] p An pointer to an allocated array. inline rcScopedDelete(T* p) : ptr(p) {} inline ~rcScopedDelete() { rcFree(ptr); } /// The root array pointer. /// @return The root array pointer. inline operator T*() { return ptr; } private: // Explicitly disabled copy constructor and copy assignment operator. rcScopedDelete(const rcScopedDelete&); rcScopedDelete& operator=(const rcScopedDelete&); }; #endif