/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* x86 32-bit arch dependent functions. */ static sljit_s32 emit_do_imm(struct sljit_compiler *compiler, sljit_u8 opcode, sljit_sw imm) { sljit_u8 *inst; inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + sizeof(sljit_sw)); FAIL_IF(!inst); INC_SIZE(1 + sizeof(sljit_sw)); *inst++ = opcode; sljit_unaligned_store_sw(inst, imm); return SLJIT_SUCCESS; } static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_s32 type, sljit_sw executable_offset) { if (type == SLJIT_JUMP) { *code_ptr++ = JMP_i32; jump->addr++; } else if (type >= SLJIT_FAST_CALL) { *code_ptr++ = CALL_i32; jump->addr++; } else { *code_ptr++ = GROUP_0F; *code_ptr++ = get_jump_code(type); jump->addr += 2; } if (jump->flags & JUMP_LABEL) jump->flags |= PATCH_MW; else sljit_unaligned_store_sw(code_ptr, jump->u.target - (jump->addr + 4) - (sljit_uw)executable_offset); code_ptr += 4; return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 size; sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); compiler->args = args; compiler->flags_saved = 0; size = 1 + (scratches > 7 ? (scratches - 7) : 0) + (saveds <= 3 ? saveds : 3); #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) size += (args > 0 ? (args * 2) : 0) + (args > 2 ? 2 : 0); #else size += (args > 0 ? (2 + args * 3) : 0); #endif inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); PUSH_REG(reg_map[TMP_REG1]); #if !(defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (args > 0) { *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[TMP_REG1] << 3) | 0x4 /* esp */; } #endif if (saveds > 2 || scratches > 7) PUSH_REG(reg_map[SLJIT_S2]); if (saveds > 1 || scratches > 8) PUSH_REG(reg_map[SLJIT_S1]); if (saveds > 0 || scratches > 9) PUSH_REG(reg_map[SLJIT_S0]); #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (args > 0) { *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_S0] << 3) | reg_map[SLJIT_R2]; } if (args > 1) { *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_S1] << 3) | reg_map[SLJIT_R1]; } if (args > 2) { *inst++ = MOV_r_rm; *inst++ = MOD_DISP8 | (reg_map[SLJIT_S2] << 3) | 0x4 /* esp */; *inst++ = 0x24; *inst++ = sizeof(sljit_sw) * (3 + 2); /* saveds >= 3 as well. */ } #else if (args > 0) { *inst++ = MOV_r_rm; *inst++ = MOD_DISP8 | (reg_map[SLJIT_S0] << 3) | reg_map[TMP_REG1]; *inst++ = sizeof(sljit_sw) * 2; } if (args > 1) { *inst++ = MOV_r_rm; *inst++ = MOD_DISP8 | (reg_map[SLJIT_S1] << 3) | reg_map[TMP_REG1]; *inst++ = sizeof(sljit_sw) * 3; } if (args > 2) { *inst++ = MOV_r_rm; *inst++ = MOD_DISP8 | (reg_map[SLJIT_S2] << 3) | reg_map[TMP_REG1]; *inst++ = sizeof(sljit_sw) * 4; } #endif SLJIT_COMPILE_ASSERT(SLJIT_LOCALS_OFFSET >= (2 + 4) * sizeof(sljit_uw), require_at_least_two_words); #if defined(__APPLE__) /* Ignore pushed registers and SLJIT_LOCALS_OFFSET when computing the aligned local size. */ saveds = (2 + (scratches > 7 ? (scratches - 7) : 0) + (saveds <= 3 ? saveds : 3)) * sizeof(sljit_uw); local_size = ((SLJIT_LOCALS_OFFSET + saveds + local_size + 15) & ~15) - saveds; #else if (options & SLJIT_DOUBLE_ALIGNMENT) { local_size = SLJIT_LOCALS_OFFSET + ((local_size + 7) & ~7); inst = (sljit_u8*)ensure_buf(compiler, 1 + 17); FAIL_IF(!inst); INC_SIZE(17); inst[0] = MOV_r_rm; inst[1] = MOD_REG | (reg_map[TMP_REG1] << 3) | reg_map[SLJIT_SP]; inst[2] = GROUP_F7; inst[3] = MOD_REG | (0 << 3) | reg_map[SLJIT_SP]; sljit_unaligned_store_sw(inst + 4, 0x4); inst[8] = JNE_i8; inst[9] = 6; inst[10] = GROUP_BINARY_81; inst[11] = MOD_REG | (5 << 3) | reg_map[SLJIT_SP]; sljit_unaligned_store_sw(inst + 12, 0x4); inst[16] = PUSH_r + reg_map[TMP_REG1]; } else local_size = SLJIT_LOCALS_OFFSET + ((local_size + 3) & ~3); #endif compiler->local_size = local_size; #ifdef _WIN32 if (local_size > 1024) { #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) FAIL_IF(emit_do_imm(compiler, MOV_r_i32 + reg_map[SLJIT_R0], local_size)); #else local_size -= SLJIT_LOCALS_OFFSET; FAIL_IF(emit_do_imm(compiler, MOV_r_i32 + reg_map[SLJIT_R0], local_size)); FAIL_IF(emit_non_cum_binary(compiler, SUB_r_rm, SUB_rm_r, SUB, SUB_EAX_i32, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, SLJIT_LOCALS_OFFSET)); #endif FAIL_IF(sljit_emit_ijump(compiler, SLJIT_CALL1, SLJIT_IMM, SLJIT_FUNC_OFFSET(sljit_grow_stack))); } #endif SLJIT_ASSERT(local_size > 0); return emit_non_cum_binary(compiler, SUB_r_rm, SUB_rm_r, SUB, SUB_EAX_i32, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, local_size); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); compiler->args = args; #if defined(__APPLE__) saveds = (2 + (scratches > 7 ? (scratches - 7) : 0) + (saveds <= 3 ? saveds : 3)) * sizeof(sljit_uw); compiler->local_size = ((SLJIT_LOCALS_OFFSET + saveds + local_size + 15) & ~15) - saveds; #else if (options & SLJIT_DOUBLE_ALIGNMENT) compiler->local_size = SLJIT_LOCALS_OFFSET + ((local_size + 7) & ~7); else compiler->local_size = SLJIT_LOCALS_OFFSET + ((local_size + 3) & ~3); #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { sljit_s32 size; sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_return(compiler, op, src, srcw)); SLJIT_ASSERT(compiler->args >= 0); compiler->flags_saved = 0; FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); SLJIT_ASSERT(compiler->local_size > 0); FAIL_IF(emit_cum_binary(compiler, ADD_r_rm, ADD_rm_r, ADD, ADD_EAX_i32, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, compiler->local_size)); #if !defined(__APPLE__) if (compiler->options & SLJIT_DOUBLE_ALIGNMENT) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 3); FAIL_IF(!inst); INC_SIZE(3); inst[0] = MOV_r_rm; inst[1] = (reg_map[SLJIT_SP] << 3) | 0x4 /* SIB */; inst[2] = (4 << 3) | reg_map[SLJIT_SP]; } #endif size = 2 + (compiler->scratches > 7 ? (compiler->scratches - 7) : 0) + (compiler->saveds <= 3 ? compiler->saveds : 3); #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (compiler->args > 2) size += 2; #else if (compiler->args > 0) size += 2; #endif inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (compiler->saveds > 0 || compiler->scratches > 9) POP_REG(reg_map[SLJIT_S0]); if (compiler->saveds > 1 || compiler->scratches > 8) POP_REG(reg_map[SLJIT_S1]); if (compiler->saveds > 2 || compiler->scratches > 7) POP_REG(reg_map[SLJIT_S2]); POP_REG(reg_map[TMP_REG1]); #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (compiler->args > 2) RET_I16(sizeof(sljit_sw)); else RET(); #else RET(); #endif return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ /* Size contains the flags as well. */ static sljit_u8* emit_x86_instruction(struct sljit_compiler *compiler, sljit_s32 size, /* The register or immediate operand. */ sljit_s32 a, sljit_sw imma, /* The general operand (not immediate). */ sljit_s32 b, sljit_sw immb) { sljit_u8 *inst; sljit_u8 *buf_ptr; sljit_s32 flags = size & ~0xf; sljit_s32 inst_size; /* Both cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BIN_INS | EX86_SHIFT_INS)) != (EX86_BIN_INS | EX86_SHIFT_INS)); /* Size flags not allowed for typed instructions. */ SLJIT_ASSERT(!(flags & (EX86_BIN_INS | EX86_SHIFT_INS)) || (flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) == 0); /* Both size flags cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) != (EX86_BYTE_ARG | EX86_HALF_ARG)); /* SSE2 and immediate is not possible. */ SLJIT_ASSERT(!(a & SLJIT_IMM) || !(flags & EX86_SSE2)); SLJIT_ASSERT((flags & (EX86_PREF_F2 | EX86_PREF_F3)) != (EX86_PREF_F2 | EX86_PREF_F3) && (flags & (EX86_PREF_F2 | EX86_PREF_66)) != (EX86_PREF_F2 | EX86_PREF_66) && (flags & (EX86_PREF_F3 | EX86_PREF_66)) != (EX86_PREF_F3 | EX86_PREF_66)); size &= 0xf; inst_size = size; if (flags & (EX86_PREF_F2 | EX86_PREF_F3)) inst_size++; if (flags & EX86_PREF_66) inst_size++; /* Calculate size of b. */ inst_size += 1; /* mod r/m byte. */ if (b & SLJIT_MEM) { if ((b & REG_MASK) == SLJIT_UNUSED) inst_size += sizeof(sljit_sw); else if (immb != 0 && !(b & OFFS_REG_MASK)) { /* Immediate operand. */ if (immb <= 127 && immb >= -128) inst_size += sizeof(sljit_s8); else inst_size += sizeof(sljit_sw); } if ((b & REG_MASK) == SLJIT_SP && !(b & OFFS_REG_MASK)) b |= TO_OFFS_REG(SLJIT_SP); if ((b & OFFS_REG_MASK) != SLJIT_UNUSED) inst_size += 1; /* SIB byte. */ } /* Calculate size of a. */ if (a & SLJIT_IMM) { if (flags & EX86_BIN_INS) { if (imma <= 127 && imma >= -128) { inst_size += 1; flags |= EX86_BYTE_ARG; } else inst_size += 4; } else if (flags & EX86_SHIFT_INS) { imma &= 0x1f; if (imma != 1) { inst_size ++; flags |= EX86_BYTE_ARG; } } else if (flags & EX86_BYTE_ARG) inst_size++; else if (flags & EX86_HALF_ARG) inst_size += sizeof(short); else inst_size += sizeof(sljit_sw); } else SLJIT_ASSERT(!(flags & EX86_SHIFT_INS) || a == SLJIT_PREF_SHIFT_REG); inst = (sljit_u8*)ensure_buf(compiler, 1 + inst_size); PTR_FAIL_IF(!inst); /* Encoding the byte. */ INC_SIZE(inst_size); if (flags & EX86_PREF_F2) *inst++ = 0xf2; if (flags & EX86_PREF_F3) *inst++ = 0xf3; if (flags & EX86_PREF_66) *inst++ = 0x66; buf_ptr = inst + size; /* Encode mod/rm byte. */ if (!(flags & EX86_SHIFT_INS)) { if ((flags & EX86_BIN_INS) && (a & SLJIT_IMM)) *inst = (flags & EX86_BYTE_ARG) ? GROUP_BINARY_83 : GROUP_BINARY_81; if ((a & SLJIT_IMM) || (a == 0)) *buf_ptr = 0; else if (!(flags & EX86_SSE2_OP1)) *buf_ptr = reg_map[a] << 3; else *buf_ptr = a << 3; } else { if (a & SLJIT_IMM) { if (imma == 1) *inst = GROUP_SHIFT_1; else *inst = GROUP_SHIFT_N; } else *inst = GROUP_SHIFT_CL; *buf_ptr = 0; } if (!(b & SLJIT_MEM)) *buf_ptr++ |= MOD_REG + ((!(flags & EX86_SSE2_OP2)) ? reg_map[b] : b); else if ((b & REG_MASK) != SLJIT_UNUSED) { if ((b & OFFS_REG_MASK) == SLJIT_UNUSED || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP)) { if (immb != 0) { if (immb <= 127 && immb >= -128) *buf_ptr |= 0x40; else *buf_ptr |= 0x80; } if ((b & OFFS_REG_MASK) == SLJIT_UNUSED) *buf_ptr++ |= reg_map[b & REG_MASK]; else { *buf_ptr++ |= 0x04; *buf_ptr++ = reg_map[b & REG_MASK] | (reg_map[OFFS_REG(b)] << 3); } if (immb != 0) { if (immb <= 127 && immb >= -128) *buf_ptr++ = immb; /* 8 bit displacement. */ else { sljit_unaligned_store_sw(buf_ptr, immb); /* 32 bit displacement. */ buf_ptr += sizeof(sljit_sw); } } } else { *buf_ptr++ |= 0x04; *buf_ptr++ = reg_map[b & REG_MASK] | (reg_map[OFFS_REG(b)] << 3) | (immb << 6); } } else { *buf_ptr++ |= 0x05; sljit_unaligned_store_sw(buf_ptr, immb); /* 32 bit displacement. */ buf_ptr += sizeof(sljit_sw); } if (a & SLJIT_IMM) { if (flags & EX86_BYTE_ARG) *buf_ptr = imma; else if (flags & EX86_HALF_ARG) sljit_unaligned_store_s16(buf_ptr, imma); else if (!(flags & EX86_SHIFT_INS)) sljit_unaligned_store_sw(buf_ptr, imma); } return !(flags & EX86_SHIFT_INS) ? inst : (inst + 1); } /* --------------------------------------------------------------------- */ /* Call / return instructions */ /* --------------------------------------------------------------------- */ static SLJIT_INLINE sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 type) { sljit_u8 *inst; #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) inst = (sljit_u8*)ensure_buf(compiler, type >= SLJIT_CALL3 ? 1 + 2 + 1 : 1 + 2); FAIL_IF(!inst); INC_SIZE(type >= SLJIT_CALL3 ? 2 + 1 : 2); if (type >= SLJIT_CALL3) PUSH_REG(reg_map[SLJIT_R2]); *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_R2] << 3) | reg_map[SLJIT_R0]; #else inst = (sljit_u8*)ensure_buf(compiler, 1 + 4 * (type - SLJIT_CALL0)); FAIL_IF(!inst); INC_SIZE(4 * (type - SLJIT_CALL0)); *inst++ = MOV_rm_r; *inst++ = MOD_DISP8 | (reg_map[SLJIT_R0] << 3) | 0x4 /* SIB */; *inst++ = (0x4 /* none*/ << 3) | reg_map[SLJIT_SP]; *inst++ = 0; if (type >= SLJIT_CALL2) { *inst++ = MOV_rm_r; *inst++ = MOD_DISP8 | (reg_map[SLJIT_R1] << 3) | 0x4 /* SIB */; *inst++ = (0x4 /* none*/ << 3) | reg_map[SLJIT_SP]; *inst++ = sizeof(sljit_sw); } if (type >= SLJIT_CALL3) { *inst++ = MOV_rm_r; *inst++ = MOD_DISP8 | (reg_map[SLJIT_R2] << 3) | 0x4 /* SIB */; *inst++ = (0x4 /* none*/ << 3) | reg_map[SLJIT_SP]; *inst++ = 2 * sizeof(sljit_sw); } #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); /* For UNUSED dst. Uncommon, but possible. */ if (dst == SLJIT_UNUSED) dst = TMP_REG1; if (FAST_IS_REG(dst)) { /* Unused dest is possible here. */ inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); POP_REG(reg_map[dst]); return SLJIT_SUCCESS; } /* Memory. */ inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = POP_rm; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_fast_return(compiler, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(src, srcw, (void)0); if (FAST_IS_REG(src)) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 1); FAIL_IF(!inst); INC_SIZE(1 + 1); PUSH_REG(reg_map[src]); } else if (src & SLJIT_MEM) { inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_FF; *inst |= PUSH_rm; inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); } else { /* SLJIT_IMM. */ inst = (sljit_u8*)ensure_buf(compiler, 1 + 5 + 1); FAIL_IF(!inst); INC_SIZE(5 + 1); *inst++ = PUSH_i32; sljit_unaligned_store_sw(inst, srcw); inst += sizeof(sljit_sw); } RET(); return SLJIT_SUCCESS; }