/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* ppc 64-bit arch dependent functions. */ #if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM) #define ASM_SLJIT_CLZ(src, dst) \ __asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) ) #elif defined(__xlc__) #error "Please enable GCC syntax for inline assembly statements" #else #error "Must implement count leading zeroes" #endif #define RLDI(dst, src, sh, mb, type) \ (HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20)) #define PUSH_RLDICR(reg, shift) \ push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1)) static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm) { sljit_uw tmp; sljit_uw shift; sljit_uw tmp2; sljit_uw shift2; if (imm <= SIMM_MAX && imm >= SIMM_MIN) return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm)); if (!(imm & ~0xffff)) return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm)); if (imm <= 0x7fffffffl && imm >= -0x80000000l) { FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16))); return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS; } /* Count leading zeroes. */ tmp = (imm >= 0) ? imm : ~imm; ASM_SLJIT_CLZ(tmp, shift); SLJIT_ASSERT(shift > 0); shift--; tmp = (imm << shift); if ((tmp & ~0xffff000000000000ul) == 0) { FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48))); shift += 15; return PUSH_RLDICR(reg, shift); } if ((tmp & ~0xffffffff00000000ul) == 0) { FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48))); FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32))); shift += 31; return PUSH_RLDICR(reg, shift); } /* Cut out the 16 bit from immediate. */ shift += 15; tmp2 = imm & ((1ul << (63 - shift)) - 1); if (tmp2 <= 0xffff) { FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48))); FAIL_IF(PUSH_RLDICR(reg, shift)); return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2); } if (tmp2 <= 0xffffffff) { FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48))); FAIL_IF(PUSH_RLDICR(reg, shift)); FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16))); return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS; } ASM_SLJIT_CLZ(tmp2, shift2); tmp2 <<= shift2; if ((tmp2 & ~0xffff000000000000ul) == 0) { FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48))); shift2 += 15; shift += (63 - shift2); FAIL_IF(PUSH_RLDICR(reg, shift)); FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48))); return PUSH_RLDICR(reg, shift2); } /* The general version. */ FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48))); FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32))); FAIL_IF(PUSH_RLDICR(reg, 31)); FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16))); return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)); } /* Simplified mnemonics: clrldi. */ #define INS_CLEAR_LEFT(dst, src, from) \ (RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5)) /* Sign extension for integer operations. */ #define UN_EXTS() \ if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \ FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \ src2 = TMP_REG2; \ } #define BIN_EXTS() \ if (flags & ALT_SIGN_EXT) { \ if (flags & REG1_SOURCE) { \ FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \ src1 = TMP_REG1; \ } \ if (flags & REG2_SOURCE) { \ FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \ src2 = TMP_REG2; \ } \ } #define BIN_IMM_EXTS() \ if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \ FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \ src1 = TMP_REG1; \ } static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_s32 src2) { switch (op) { case SLJIT_MOV: case SLJIT_MOV_P: SLJIT_ASSERT(src1 == TMP_REG1); if (dst != src2) return push_inst(compiler, OR | S(src2) | A(dst) | B(src2)); return SLJIT_SUCCESS; case SLJIT_MOV_U32: case SLJIT_MOV_S32: SLJIT_ASSERT(src1 == TMP_REG1); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S32) return push_inst(compiler, EXTSW | S(src2) | A(dst)); return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0)); } else { SLJIT_ASSERT(dst == src2); } return SLJIT_SUCCESS; case SLJIT_MOV_U8: case SLJIT_MOV_S8: SLJIT_ASSERT(src1 == TMP_REG1); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S8) return push_inst(compiler, EXTSB | S(src2) | A(dst)); return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24)); } else if ((flags & REG_DEST) && op == SLJIT_MOV_S8) return push_inst(compiler, EXTSB | S(src2) | A(dst)); else { SLJIT_ASSERT(dst == src2); } return SLJIT_SUCCESS; case SLJIT_MOV_U16: case SLJIT_MOV_S16: SLJIT_ASSERT(src1 == TMP_REG1); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S16) return push_inst(compiler, EXTSH | S(src2) | A(dst)); return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16)); } else { SLJIT_ASSERT(dst == src2); } return SLJIT_SUCCESS; case SLJIT_NOT: SLJIT_ASSERT(src1 == TMP_REG1); UN_EXTS(); return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2)); case SLJIT_NEG: SLJIT_ASSERT(src1 == TMP_REG1); UN_EXTS(); return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2)); case SLJIT_CLZ: SLJIT_ASSERT(src1 == TMP_REG1); if (flags & ALT_FORM1) return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst)); return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst)); case SLJIT_ADD: if (flags & ALT_FORM1) { /* Flags does not set: BIN_IMM_EXTS unnecessary. */ SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm); } if (flags & ALT_FORM2) { /* Flags does not set: BIN_IMM_EXTS unnecessary. */ SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm); } if (flags & ALT_FORM3) { SLJIT_ASSERT(src2 == TMP_REG2); BIN_IMM_EXTS(); return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm); } if (flags & ALT_FORM4) { /* Flags does not set: BIN_IMM_EXTS unnecessary. */ FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff))); return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1))); } if (!(flags & ALT_SET_FLAGS)) return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2)); BIN_EXTS(); return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2)); case SLJIT_ADDC: if (flags & ALT_FORM1) { FAIL_IF(push_inst(compiler, MFXER | D(0))); FAIL_IF(push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2))); return push_inst(compiler, MTXER | S(0)); } BIN_EXTS(); return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2)); case SLJIT_SUB: if (flags & ALT_FORM1) { /* Flags does not set: BIN_IMM_EXTS unnecessary. */ SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm); } if (flags & (ALT_FORM2 | ALT_FORM3)) { SLJIT_ASSERT(src2 == TMP_REG2); if (flags & ALT_FORM2) FAIL_IF(push_inst(compiler, CMPI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm)); if (flags & ALT_FORM3) return push_inst(compiler, CMPLI | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm); return SLJIT_SUCCESS; } if (flags & (ALT_FORM4 | ALT_FORM5)) { if (flags & ALT_FORM4) FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2))); if (flags & ALT_FORM5) return push_inst(compiler, CMP | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)); return SLJIT_SUCCESS; } if (!(flags & ALT_SET_FLAGS)) return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1)); BIN_EXTS(); if (flags & ALT_FORM6) FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2))); return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1)); case SLJIT_SUBC: if (flags & ALT_FORM1) { FAIL_IF(push_inst(compiler, MFXER | D(0))); FAIL_IF(push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1))); return push_inst(compiler, MTXER | S(0)); } BIN_EXTS(); return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1)); case SLJIT_MUL: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm); } BIN_EXTS(); if (flags & ALT_FORM2) return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1)); return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1)); case SLJIT_AND: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM2) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm); } return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_OR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM2) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM3) { SLJIT_ASSERT(src2 == TMP_REG2); FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm))); return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16)); } return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_XOR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM2) { SLJIT_ASSERT(src2 == TMP_REG2); return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm); } if (flags & ALT_FORM3) { SLJIT_ASSERT(src2 == TMP_REG2); FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm))); return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16)); } return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_SHL: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); if (flags & ALT_FORM2) { compiler->imm &= 0x1f; return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1)); } else { compiler->imm &= 0x3f; return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags)); } } return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_LSHR: if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); if (flags & ALT_FORM2) { compiler->imm &= 0x1f; return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1)); } else { compiler->imm &= 0x3f; return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags)); } } return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2)); case SLJIT_ASHR: if (flags & ALT_FORM3) FAIL_IF(push_inst(compiler, MFXER | D(0))); if (flags & ALT_FORM1) { SLJIT_ASSERT(src2 == TMP_REG2); if (flags & ALT_FORM2) { compiler->imm &= 0x1f; FAIL_IF(push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11))); } else { compiler->imm &= 0x3f; FAIL_IF(push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4))); } } else FAIL_IF(push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2))); return (flags & ALT_FORM3) ? push_inst(compiler, MTXER | S(0)) : SLJIT_SUCCESS; } SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value) { FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48))); FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32))); FAIL_IF(PUSH_RLDICR(reg, 31)); FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16))); return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value)); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset) { sljit_ins *inst = (sljit_ins*)addr; inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 48) & 0xffff); inst[1] = (inst[1] & 0xffff0000) | ((new_target >> 32) & 0xffff); inst[3] = (inst[3] & 0xffff0000) | ((new_target >> 16) & 0xffff); inst[4] = (inst[4] & 0xffff0000) | (new_target & 0xffff); inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 5); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset) { sljit_ins *inst = (sljit_ins*)addr; inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff); inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff); inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff); inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff); inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 5); }