/* ssl/s3_enc.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include <stdio.h> #include "ssl_locl.h" #include <openssl/evp.h> #include <openssl/md5.h> static unsigned char ssl3_pad_1[48] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; static unsigned char ssl3_pad_2[48] = { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c }; static int ssl3_handshake_mac(SSL *s, int md_nid, const char *sender, int len, unsigned char *p); static int ssl3_generate_key_block(SSL *s, unsigned char *km, int num) { EVP_MD_CTX m5; EVP_MD_CTX s1; unsigned char buf[16], smd[SHA_DIGEST_LENGTH]; unsigned char c = 'A'; unsigned int i, j, k; #ifdef CHARSET_EBCDIC c = os_toascii[c]; /* 'A' in ASCII */ #endif k = 0; EVP_MD_CTX_init(&m5); EVP_MD_CTX_set_flags(&m5, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); EVP_MD_CTX_init(&s1); for (i = 0; (int)i < num; i += MD5_DIGEST_LENGTH) { k++; if (k > sizeof(buf)) /* bug: 'buf' is too small for this ciphersuite */ goto err; for (j = 0; j < k; j++) buf[j] = c; c++; if (!EVP_DigestInit_ex(&s1, EVP_sha1(), NULL) || !EVP_DigestUpdate(&s1, buf, k) || !EVP_DigestUpdate(&s1, s->session->master_key, s->session->master_key_length) || !EVP_DigestUpdate(&s1, s->s3->server_random, SSL3_RANDOM_SIZE) || !EVP_DigestUpdate(&s1, s->s3->client_random, SSL3_RANDOM_SIZE) || !EVP_DigestFinal_ex(&s1, smd, NULL)) goto err2; if (!EVP_DigestInit_ex(&m5, EVP_md5(), NULL) || !EVP_DigestUpdate(&m5, s->session->master_key, s->session->master_key_length) || !EVP_DigestUpdate(&m5, smd, SHA_DIGEST_LENGTH)) goto err2; if ((int)(i + MD5_DIGEST_LENGTH) > num) { if (!EVP_DigestFinal_ex(&m5, smd, NULL)) goto err2; memcpy(km, smd, (num - i)); } else if (!EVP_DigestFinal_ex(&m5, km, NULL)) goto err2; km += MD5_DIGEST_LENGTH; } OPENSSL_cleanse(smd, SHA_DIGEST_LENGTH); EVP_MD_CTX_cleanup(&m5); EVP_MD_CTX_cleanup(&s1); return 1; err: SSLerr(SSL_F_SSL3_GENERATE_KEY_BLOCK, ERR_R_INTERNAL_ERROR); err2: EVP_MD_CTX_cleanup(&m5); EVP_MD_CTX_cleanup(&s1); return 0; } int ssl3_change_cipher_state(SSL *s, int which) { unsigned char *p, *mac_secret; unsigned char exp_key[EVP_MAX_KEY_LENGTH]; unsigned char exp_iv[EVP_MAX_IV_LENGTH]; unsigned char *ms, *key, *iv, *er1, *er2; EVP_CIPHER_CTX *dd; const EVP_CIPHER *c; #ifndef OPENSSL_NO_COMP COMP_METHOD *comp; #endif const EVP_MD *m; EVP_MD_CTX md; int is_exp, n, i, j, k, cl; int reuse_dd = 0; is_exp = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher); c = s->s3->tmp.new_sym_enc; m = s->s3->tmp.new_hash; /* m == NULL will lead to a crash later */ OPENSSL_assert(m); #ifndef OPENSSL_NO_COMP if (s->s3->tmp.new_compression == NULL) comp = NULL; else comp = s->s3->tmp.new_compression->method; #endif if (which & SSL3_CC_READ) { if (s->enc_read_ctx != NULL) reuse_dd = 1; else if ((s->enc_read_ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL) goto err; else /* * make sure it's intialized in case we exit later with an error */ EVP_CIPHER_CTX_init(s->enc_read_ctx); dd = s->enc_read_ctx; if (ssl_replace_hash(&s->read_hash, m) == NULL) { SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } #ifndef OPENSSL_NO_COMP /* COMPRESS */ if (s->expand != NULL) { COMP_CTX_free(s->expand); s->expand = NULL; } if (comp != NULL) { s->expand = COMP_CTX_new(comp); if (s->expand == NULL) { SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } if (s->s3->rrec.comp == NULL) s->s3->rrec.comp = (unsigned char *) OPENSSL_malloc(SSL3_RT_MAX_PLAIN_LENGTH); if (s->s3->rrec.comp == NULL) goto err; } #endif memset(&(s->s3->read_sequence[0]), 0, 8); mac_secret = &(s->s3->read_mac_secret[0]); } else { if (s->enc_write_ctx != NULL) reuse_dd = 1; else if ((s->enc_write_ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL) goto err; else /* * make sure it's intialized in case we exit later with an error */ EVP_CIPHER_CTX_init(s->enc_write_ctx); dd = s->enc_write_ctx; if (ssl_replace_hash(&s->write_hash, m) == NULL) { SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } #ifndef OPENSSL_NO_COMP /* COMPRESS */ if (s->compress != NULL) { COMP_CTX_free(s->compress); s->compress = NULL; } if (comp != NULL) { s->compress = COMP_CTX_new(comp); if (s->compress == NULL) { SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } } #endif memset(&(s->s3->write_sequence[0]), 0, 8); mac_secret = &(s->s3->write_mac_secret[0]); } if (reuse_dd) EVP_CIPHER_CTX_cleanup(dd); p = s->s3->tmp.key_block; i = EVP_MD_size(m); if (i < 0) goto err2; cl = EVP_CIPHER_key_length(c); j = is_exp ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ? cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl; /* Was j=(is_exp)?5:EVP_CIPHER_key_length(c); */ k = EVP_CIPHER_iv_length(c); if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || (which == SSL3_CHANGE_CIPHER_SERVER_READ)) { ms = &(p[0]); n = i + i; key = &(p[n]); n += j + j; iv = &(p[n]); n += k + k; er1 = &(s->s3->client_random[0]); er2 = &(s->s3->server_random[0]); } else { n = i; ms = &(p[n]); n += i + j; key = &(p[n]); n += j + k; iv = &(p[n]); n += k; er1 = &(s->s3->server_random[0]); er2 = &(s->s3->client_random[0]); } if (n > s->s3->tmp.key_block_length) { SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } EVP_MD_CTX_init(&md); memcpy(mac_secret, ms, i); if (is_exp) { /* * In here I set both the read and write key/iv to the same value * since only the correct one will be used :-). */ if (!EVP_DigestInit_ex(&md, EVP_md5(), NULL) || !EVP_DigestUpdate(&md, key, j) || !EVP_DigestUpdate(&md, er1, SSL3_RANDOM_SIZE) || !EVP_DigestUpdate(&md, er2, SSL3_RANDOM_SIZE) || !EVP_DigestFinal_ex(&md, &(exp_key[0]), NULL)) { EVP_MD_CTX_cleanup(&md); goto err2; } key = &(exp_key[0]); if (k > 0) { if (!EVP_DigestInit_ex(&md, EVP_md5(), NULL) || !EVP_DigestUpdate(&md, er1, SSL3_RANDOM_SIZE) || !EVP_DigestUpdate(&md, er2, SSL3_RANDOM_SIZE) || !EVP_DigestFinal_ex(&md, &(exp_iv[0]), NULL)) { EVP_MD_CTX_cleanup(&md); goto err2; } iv = &(exp_iv[0]); } } EVP_MD_CTX_cleanup(&md); s->session->key_arg_length = 0; if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) goto err2; #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : TLS1_RT_CRYPTO_READ; s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC, mac_secret, EVP_MD_size(m), s, s->msg_callback_arg); if (c->key_len) s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY, key, c->key_len, s, s->msg_callback_arg); if (k) { s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_IV, iv, k, s, s->msg_callback_arg); } } #endif OPENSSL_cleanse(&(exp_key[0]), sizeof(exp_key)); OPENSSL_cleanse(&(exp_iv[0]), sizeof(exp_iv)); return (1); err: SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); err2: return (0); } int ssl3_setup_key_block(SSL *s) { unsigned char *p; const EVP_CIPHER *c; const EVP_MD *hash; int num; int ret = 0; SSL_COMP *comp; if (s->s3->tmp.key_block_length != 0) return (1); if (!ssl_cipher_get_evp(s->session, &c, &hash, NULL, NULL, &comp)) { SSLerr(SSL_F_SSL3_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return (0); } s->s3->tmp.new_sym_enc = c; s->s3->tmp.new_hash = hash; #ifdef OPENSSL_NO_COMP s->s3->tmp.new_compression = NULL; #else s->s3->tmp.new_compression = comp; #endif num = EVP_MD_size(hash); if (num < 0) return 0; num = EVP_CIPHER_key_length(c) + num + EVP_CIPHER_iv_length(c); num *= 2; ssl3_cleanup_key_block(s); if ((p = OPENSSL_malloc(num)) == NULL) goto err; s->s3->tmp.key_block_length = num; s->s3->tmp.key_block = p; ret = ssl3_generate_key_block(s, p, num); if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)) { /* * enable vulnerability countermeasure for CBC ciphers with known-IV * problem (http://www.openssl.org/~bodo/tls-cbc.txt) */ s->s3->need_empty_fragments = 1; if (s->session->cipher != NULL) { if (s->session->cipher->algorithm_enc == SSL_eNULL) s->s3->need_empty_fragments = 0; #ifndef OPENSSL_NO_RC4 if (s->session->cipher->algorithm_enc == SSL_RC4) s->s3->need_empty_fragments = 0; #endif } } return ret; err: SSLerr(SSL_F_SSL3_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); return (0); } void ssl3_cleanup_key_block(SSL *s) { if (s->s3->tmp.key_block != NULL) { OPENSSL_cleanse(s->s3->tmp.key_block, s->s3->tmp.key_block_length); OPENSSL_free(s->s3->tmp.key_block); s->s3->tmp.key_block = NULL; } s->s3->tmp.key_block_length = 0; } /*- * ssl3_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. * * Returns: * 0: (in non-constant time) if the record is publically invalid (i.e. too * short etc). * 1: if the record's padding is valid / the encryption was successful. * -1: if the record's padding is invalid or, if sending, an internal error * occured. */ int ssl3_enc(SSL *s, int send) { SSL3_RECORD *rec; EVP_CIPHER_CTX *ds; unsigned long l; int bs, i, mac_size = 0; const EVP_CIPHER *enc; if (send) { ds = s->enc_write_ctx; rec = &(s->s3->wrec); if (s->enc_write_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); } else { ds = s->enc_read_ctx; rec = &(s->s3->rrec); if (s->enc_read_ctx == NULL) enc = NULL; else enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); } if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { memmove(rec->data, rec->input, rec->length); rec->input = rec->data; } else { l = rec->length; bs = EVP_CIPHER_block_size(ds->cipher); /* COMPRESS */ if ((bs != 1) && send) { i = bs - ((int)l % bs); /* we need to add 'i-1' padding bytes */ l += i; /* * the last of these zero bytes will be overwritten with the * padding length. */ memset(&rec->input[rec->length], 0, i); rec->length += i; rec->input[l - 1] = (i - 1); } if (!send) { if (l == 0 || l % bs != 0) return 0; /* otherwise, rec->length >= bs */ } if (EVP_Cipher(ds, rec->data, rec->input, l) < 1) return -1; if (EVP_MD_CTX_md(s->read_hash) != NULL) mac_size = EVP_MD_CTX_size(s->read_hash); if ((bs != 1) && !send) return ssl3_cbc_remove_padding(s, rec, bs, mac_size); } return 1; } int ssl3_init_finished_mac(SSL *s) { if (s->s3->handshake_buffer) BIO_free(s->s3->handshake_buffer); if (s->s3->handshake_dgst) ssl3_free_digest_list(s); s->s3->handshake_buffer = BIO_new(BIO_s_mem()); if (s->s3->handshake_buffer == NULL) return 0; (void)BIO_set_close(s->s3->handshake_buffer, BIO_CLOSE); return 1; } void ssl3_free_digest_list(SSL *s) { int i; if (!s->s3->handshake_dgst) return; for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i]) EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]); } OPENSSL_free(s->s3->handshake_dgst); s->s3->handshake_dgst = NULL; } void ssl3_finish_mac(SSL *s, const unsigned char *buf, int len) { if (s->s3->handshake_buffer && !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) { BIO_write(s->s3->handshake_buffer, (void *)buf, len); } else { int i; for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i] != NULL) EVP_DigestUpdate(s->s3->handshake_dgst[i], buf, len); } } } int ssl3_digest_cached_records(SSL *s) { int i; long mask; const EVP_MD *md; long hdatalen; void *hdata; /* Allocate handshake_dgst array */ ssl3_free_digest_list(s); s->s3->handshake_dgst = OPENSSL_malloc(SSL_MAX_DIGEST * sizeof(EVP_MD_CTX *)); if (s->s3->handshake_dgst == NULL) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE); return 0; } memset(s->s3->handshake_dgst, 0, SSL_MAX_DIGEST * sizeof(EVP_MD_CTX *)); hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata); if (hdatalen <= 0) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, SSL_R_BAD_HANDSHAKE_LENGTH); return 0; } /* Loop through bitso of algorithm2 field and create MD_CTX-es */ for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) { if ((mask & ssl_get_algorithm2(s)) && md) { s->s3->handshake_dgst[i] = EVP_MD_CTX_create(); if (s->s3->handshake_dgst[i] == NULL) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE); return 0; } #ifdef OPENSSL_FIPS if (EVP_MD_nid(md) == NID_md5) { EVP_MD_CTX_set_flags(s->s3->handshake_dgst[i], EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); } #endif if (!EVP_DigestInit_ex(s->s3->handshake_dgst[i], md, NULL) || !EVP_DigestUpdate(s->s3->handshake_dgst[i], hdata, hdatalen)) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_INTERNAL_ERROR); return 0; } } else { s->s3->handshake_dgst[i] = NULL; } } if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) { /* Free handshake_buffer BIO */ BIO_free(s->s3->handshake_buffer); s->s3->handshake_buffer = NULL; } return 1; } int ssl3_cert_verify_mac(SSL *s, int md_nid, unsigned char *p) { return (ssl3_handshake_mac(s, md_nid, NULL, 0, p)); } int ssl3_final_finish_mac(SSL *s, const char *sender, int len, unsigned char *p) { int ret, sha1len; ret = ssl3_handshake_mac(s, NID_md5, sender, len, p); if (ret == 0) return 0; p += ret; sha1len = ssl3_handshake_mac(s, NID_sha1, sender, len, p); if (sha1len == 0) return 0; ret += sha1len; return (ret); } static int ssl3_handshake_mac(SSL *s, int md_nid, const char *sender, int len, unsigned char *p) { unsigned int ret; int npad, n; unsigned int i; unsigned char md_buf[EVP_MAX_MD_SIZE]; EVP_MD_CTX ctx, *d = NULL; if (s->s3->handshake_buffer) if (!ssl3_digest_cached_records(s)) return 0; /* * Search for digest of specified type in the handshake_dgst array */ for (i = 0; i < SSL_MAX_DIGEST; i++) { if (s->s3->handshake_dgst[i] && EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) { d = s->s3->handshake_dgst[i]; break; } } if (!d) { SSLerr(SSL_F_SSL3_HANDSHAKE_MAC, SSL_R_NO_REQUIRED_DIGEST); return 0; } EVP_MD_CTX_init(&ctx); EVP_MD_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); EVP_MD_CTX_copy_ex(&ctx, d); n = EVP_MD_CTX_size(&ctx); if (n < 0) return 0; npad = (48 / n) * n; if ((sender != NULL && EVP_DigestUpdate(&ctx, sender, len) <= 0) || EVP_DigestUpdate(&ctx, s->session->master_key, s->session->master_key_length) <= 0 || EVP_DigestUpdate(&ctx, ssl3_pad_1, npad) <= 0 || EVP_DigestFinal_ex(&ctx, md_buf, &i) <= 0 || EVP_DigestInit_ex(&ctx, EVP_MD_CTX_md(&ctx), NULL) <= 0 || EVP_DigestUpdate(&ctx, s->session->master_key, s->session->master_key_length) <= 0 || EVP_DigestUpdate(&ctx, ssl3_pad_2, npad) <= 0 || EVP_DigestUpdate(&ctx, md_buf, i) <= 0 || EVP_DigestFinal_ex(&ctx, p, &ret) <= 0) { SSLerr(SSL_F_SSL3_HANDSHAKE_MAC, ERR_R_INTERNAL_ERROR); ret = 0; } EVP_MD_CTX_cleanup(&ctx); return ((int)ret); } int n_ssl3_mac(SSL *ssl, unsigned char *md, int send) { SSL3_RECORD *rec; unsigned char *mac_sec, *seq; EVP_MD_CTX md_ctx; const EVP_MD_CTX *hash; unsigned char *p, rec_char; size_t md_size, orig_len; int npad; int t; if (send) { rec = &(ssl->s3->wrec); mac_sec = &(ssl->s3->write_mac_secret[0]); seq = &(ssl->s3->write_sequence[0]); hash = ssl->write_hash; } else { rec = &(ssl->s3->rrec); mac_sec = &(ssl->s3->read_mac_secret[0]); seq = &(ssl->s3->read_sequence[0]); hash = ssl->read_hash; } t = EVP_MD_CTX_size(hash); if (t < 0) return -1; md_size = t; npad = (48 / md_size) * md_size; /* * kludge: ssl3_cbc_remove_padding passes padding length in rec->type */ orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8); rec->type &= 0xff; if (!send && EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && ssl3_cbc_record_digest_supported(hash)) { /* * This is a CBC-encrypted record. We must avoid leaking any * timing-side channel information about how many blocks of data we * are hashing because that gives an attacker a timing-oracle. */ /*- * npad is, at most, 48 bytes and that's with MD5: * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75. * * With SHA-1 (the largest hash speced for SSLv3) the hash size * goes up 4, but npad goes down by 8, resulting in a smaller * total size. */ unsigned char header[75]; unsigned j = 0; memcpy(header + j, mac_sec, md_size); j += md_size; memcpy(header + j, ssl3_pad_1, npad); j += npad; memcpy(header + j, seq, 8); j += 8; header[j++] = rec->type; header[j++] = rec->length >> 8; header[j++] = rec->length & 0xff; /* Final param == is SSLv3 */ if (ssl3_cbc_digest_record(hash, md, &md_size, header, rec->input, rec->length + md_size, orig_len, mac_sec, md_size, 1) <= 0) return -1; } else { unsigned int md_size_u; /* Chop the digest off the end :-) */ EVP_MD_CTX_init(&md_ctx); rec_char = rec->type; p = md; s2n(rec->length, p); if (EVP_MD_CTX_copy_ex(&md_ctx, hash) <= 0 || EVP_DigestUpdate(&md_ctx, mac_sec, md_size) <= 0 || EVP_DigestUpdate(&md_ctx, ssl3_pad_1, npad) <= 0 || EVP_DigestUpdate(&md_ctx, seq, 8) <= 0 || EVP_DigestUpdate(&md_ctx, &rec_char, 1) <= 0 || EVP_DigestUpdate(&md_ctx, md, 2) <= 0 || EVP_DigestUpdate(&md_ctx, rec->input, rec->length) <= 0 || EVP_DigestFinal_ex(&md_ctx, md, NULL) <= 0 || EVP_MD_CTX_copy_ex(&md_ctx, hash) <= 0 || EVP_DigestUpdate(&md_ctx, mac_sec, md_size) <= 0 || EVP_DigestUpdate(&md_ctx, ssl3_pad_2, npad) <= 0 || EVP_DigestUpdate(&md_ctx, md, md_size) <= 0 || EVP_DigestFinal_ex(&md_ctx, md, &md_size_u) <= 0) { EVP_MD_CTX_cleanup(&md_ctx); return -1; } md_size = md_size_u; EVP_MD_CTX_cleanup(&md_ctx); } ssl3_record_sequence_update(seq); return (md_size); } void ssl3_record_sequence_update(unsigned char *seq) { int i; for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } } int ssl3_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, int len) { static const unsigned char *salt[3] = { #ifndef CHARSET_EBCDIC (const unsigned char *)"A", (const unsigned char *)"BB", (const unsigned char *)"CCC", #else (const unsigned char *)"\x41", (const unsigned char *)"\x42\x42", (const unsigned char *)"\x43\x43\x43", #endif }; unsigned char buf[EVP_MAX_MD_SIZE]; EVP_MD_CTX ctx; int i, ret = 0; unsigned int n; #ifdef OPENSSL_SSL_TRACE_CRYPTO unsigned char *tmpout = out; #endif EVP_MD_CTX_init(&ctx); for (i = 0; i < 3; i++) { if (EVP_DigestInit_ex(&ctx, s->ctx->sha1, NULL) <= 0 || EVP_DigestUpdate(&ctx, salt[i], strlen((const char *)salt[i])) <= 0 || EVP_DigestUpdate(&ctx, p, len) <= 0 || EVP_DigestUpdate(&ctx, &(s->s3->client_random[0]), SSL3_RANDOM_SIZE) <= 0 || EVP_DigestUpdate(&ctx, &(s->s3->server_random[0]), SSL3_RANDOM_SIZE) <= 0 || EVP_DigestFinal_ex(&ctx, buf, &n) <= 0 || EVP_DigestInit_ex(&ctx, s->ctx->md5, NULL) <= 0 || EVP_DigestUpdate(&ctx, p, len) <= 0 || EVP_DigestUpdate(&ctx, buf, n) <= 0 || EVP_DigestFinal_ex(&ctx, out, &n) <= 0) { SSLerr(SSL_F_SSL3_GENERATE_MASTER_SECRET, ERR_R_INTERNAL_ERROR); ret = 0; break; } out += n; ret += n; } EVP_MD_CTX_cleanup(&ctx); #ifdef OPENSSL_SSL_TRACE_CRYPTO if (ret > 0 && s->msg_callback) { s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER, p, len, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM, s->s3->client_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM, s->s3->server_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER, tmpout, SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg); } #endif OPENSSL_cleanse(buf, sizeof(buf)); return (ret); } int ssl3_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return (SSL3_AD_CLOSE_NOTIFY); case SSL_AD_UNEXPECTED_MESSAGE: return (SSL3_AD_UNEXPECTED_MESSAGE); case SSL_AD_BAD_RECORD_MAC: return (SSL3_AD_BAD_RECORD_MAC); case SSL_AD_DECRYPTION_FAILED: return (SSL3_AD_BAD_RECORD_MAC); case SSL_AD_RECORD_OVERFLOW: return (SSL3_AD_BAD_RECORD_MAC); case SSL_AD_DECOMPRESSION_FAILURE: return (SSL3_AD_DECOMPRESSION_FAILURE); case SSL_AD_HANDSHAKE_FAILURE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_NO_CERTIFICATE: return (SSL3_AD_NO_CERTIFICATE); case SSL_AD_BAD_CERTIFICATE: return (SSL3_AD_BAD_CERTIFICATE); case SSL_AD_UNSUPPORTED_CERTIFICATE: return (SSL3_AD_UNSUPPORTED_CERTIFICATE); case SSL_AD_CERTIFICATE_REVOKED: return (SSL3_AD_CERTIFICATE_REVOKED); case SSL_AD_CERTIFICATE_EXPIRED: return (SSL3_AD_CERTIFICATE_EXPIRED); case SSL_AD_CERTIFICATE_UNKNOWN: return (SSL3_AD_CERTIFICATE_UNKNOWN); case SSL_AD_ILLEGAL_PARAMETER: return (SSL3_AD_ILLEGAL_PARAMETER); case SSL_AD_UNKNOWN_CA: return (SSL3_AD_BAD_CERTIFICATE); case SSL_AD_ACCESS_DENIED: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_DECODE_ERROR: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_DECRYPT_ERROR: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_EXPORT_RESTRICTION: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_PROTOCOL_VERSION: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_INSUFFICIENT_SECURITY: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_INTERNAL_ERROR: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_USER_CANCELLED: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_NO_RENEGOTIATION: return (-1); /* Don't send it :-) */ case SSL_AD_UNSUPPORTED_EXTENSION: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_CERTIFICATE_UNOBTAINABLE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_UNRECOGNIZED_NAME: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_UNKNOWN_PSK_IDENTITY: return (TLS1_AD_UNKNOWN_PSK_IDENTITY); case SSL_AD_INAPPROPRIATE_FALLBACK: return (TLS1_AD_INAPPROPRIATE_FALLBACK); default: return (-1); } }