/******************************************************************************* * Copyright 2016-2019 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /******************************************************************************* * Copyright (c) 2007 MITSUNARI Shigeo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * Neither the name of the copyright owner nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #ifndef XBYAK_XBYAK_UTIL_H_ #define XBYAK_XBYAK_UTIL_H_ /** utility class and functions for Xbyak Xbyak::util::Clock ; rdtsc timer Xbyak::util::Cpu ; detect CPU @note this header is UNDER CONSTRUCTION! */ #include "xbyak.h" #if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || defined(_M_X64) #define XBYAK_INTEL_CPU_SPECIFIC #endif #ifdef XBYAK_INTEL_CPU_SPECIFIC #ifdef _MSC_VER #if (_MSC_VER < 1400) && defined(XBYAK32) static inline __declspec(naked) void __cpuid(int[4], int) { __asm { push ebx push esi mov eax, dword ptr [esp + 4 * 2 + 8] // eaxIn cpuid mov esi, dword ptr [esp + 4 * 2 + 4] // data mov dword ptr [esi], eax mov dword ptr [esi + 4], ebx mov dword ptr [esi + 8], ecx mov dword ptr [esi + 12], edx pop esi pop ebx ret } } #else #include // for __cpuid #endif #else #ifndef __GNUC_PREREQ #define __GNUC_PREREQ(major, minor) ((((__GNUC__) << 16) + (__GNUC_MINOR__)) >= (((major) << 16) + (minor))) #endif #if __GNUC_PREREQ(4, 3) && !defined(__APPLE__) #include #else #if defined(__APPLE__) && defined(XBYAK32) // avoid err : can't find a register in class `BREG' while reloading `asm' #define __cpuid(eaxIn, a, b, c, d) __asm__ __volatile__("pushl %%ebx\ncpuid\nmovl %%ebp, %%esi\npopl %%ebx" : "=a"(a), "=S"(b), "=c"(c), "=d"(d) : "0"(eaxIn)) #define __cpuid_count(eaxIn, ecxIn, a, b, c, d) __asm__ __volatile__("pushl %%ebx\ncpuid\nmovl %%ebp, %%esi\npopl %%ebx" : "=a"(a), "=S"(b), "=c"(c), "=d"(d) : "0"(eaxIn), "2"(ecxIn)) #else #define __cpuid(eaxIn, a, b, c, d) __asm__ __volatile__("cpuid\n" : "=a"(a), "=b"(b), "=c"(c), "=d"(d) : "0"(eaxIn)) #define __cpuid_count(eaxIn, ecxIn, a, b, c, d) __asm__ __volatile__("cpuid\n" : "=a"(a), "=b"(b), "=c"(c), "=d"(d) : "0"(eaxIn), "2"(ecxIn)) #endif #endif #endif #endif namespace Xbyak { namespace util { typedef enum { SmtLevel = 1, CoreLevel = 2 } IntelCpuTopologyLevel; /** CPU detection class */ class Cpu { uint64 type_; //system topology bool x2APIC_supported_; static const size_t maxTopologyLevels = 2; unsigned int numCores_[maxTopologyLevels]; static const unsigned int maxNumberCacheLevels = 10; unsigned int dataCacheSize_[maxNumberCacheLevels]; unsigned int coresSharignDataCache_[maxNumberCacheLevels]; unsigned int dataCacheLevels_; unsigned int get32bitAsBE(const char *x) const { return x[0] | (x[1] << 8) | (x[2] << 16) | (x[3] << 24); } unsigned int mask(int n) const { return (1U << n) - 1; } void setFamily() { unsigned int data[4] = {}; getCpuid(1, data); stepping = data[0] & mask(4); model = (data[0] >> 4) & mask(4); family = (data[0] >> 8) & mask(4); // type = (data[0] >> 12) & mask(2); extModel = (data[0] >> 16) & mask(4); extFamily = (data[0] >> 20) & mask(8); if (family == 0x0f) { displayFamily = family + extFamily; } else { displayFamily = family; } if (family == 6 || family == 0x0f) { displayModel = (extModel << 4) + model; } else { displayModel = model; } } unsigned int extractBit(unsigned int val, unsigned int base, unsigned int end) { return (val >> base) & ((1u << (end - base)) - 1); } void setNumCores() { if ((type_ & tINTEL) == 0) return; unsigned int data[4] = {}; /* CAUTION: These numbers are configuration as shipped by Intel. */ getCpuidEx(0x0, 0, data); if (data[0] >= 0xB) { /* if leaf 11 exists(x2APIC is supported), we use it to get the number of smt cores and cores on socket leaf 0xB can be zeroed-out by a hypervisor */ x2APIC_supported_ = true; for (unsigned int i = 0; i < maxTopologyLevels; i++) { getCpuidEx(0xB, i, data); IntelCpuTopologyLevel level = (IntelCpuTopologyLevel)extractBit(data[2], 8, 15); if (level == SmtLevel || level == CoreLevel) { numCores_[level - 1] = extractBit(data[1], 0, 15); } } } else { /* Failed to deremine num of cores without x2APIC support. TODO: USE initial APIC ID to determine ncores. */ numCores_[SmtLevel - 1] = 0; numCores_[CoreLevel - 1] = 0; } } void setCacheHierarchy() { if ((type_ & tINTEL) == 0) return; const unsigned int NO_CACHE = 0; const unsigned int DATA_CACHE = 1; // const unsigned int INSTRUCTION_CACHE = 2; const unsigned int UNIFIED_CACHE = 3; unsigned int smt_width = 0; unsigned int logical_cores = 0; unsigned int data[4] = {}; if (x2APIC_supported_) { smt_width = numCores_[0]; logical_cores = numCores_[1]; } /* Assumptions: the first level of data cache is not shared (which is the case for every existing architecture) and use this to determine the SMT width for arch not supporting leaf 11. when leaf 4 reports a number of core less than numCores_ on socket reported by leaf 11, then it is a correct number of cores not an upperbound. */ for (int i = 0; dataCacheLevels_ < maxNumberCacheLevels; i++) { getCpuidEx(0x4, i, data); unsigned int cacheType = extractBit(data[0], 0, 4); if (cacheType == NO_CACHE) break; if (cacheType == DATA_CACHE || cacheType == UNIFIED_CACHE) { unsigned int actual_logical_cores = extractBit(data[0], 14, 25) + 1; if (logical_cores != 0) { // true only if leaf 0xB is supported and valid actual_logical_cores = (std::min)(actual_logical_cores, logical_cores); } assert(actual_logical_cores != 0); dataCacheSize_[dataCacheLevels_] = (extractBit(data[1], 22, 31) + 1) * (extractBit(data[1], 12, 21) + 1) * (extractBit(data[1], 0, 11) + 1) * (data[2] + 1); if (cacheType == DATA_CACHE && smt_width == 0) smt_width = actual_logical_cores; assert(smt_width != 0); // FIXME: check and fix number of cores sharing L3 cache for different configurations // (HT-, 2 sockets), (HT-, 1 socket), (HT+, 2 sockets), (HT+, 1 socket) coresSharignDataCache_[dataCacheLevels_] = (std::max)(actual_logical_cores / smt_width, 1u); dataCacheLevels_++; } } } public: int model; int family; int stepping; int extModel; int extFamily; int displayFamily; // family + extFamily int displayModel; // model + extModel unsigned int getNumCores(IntelCpuTopologyLevel level) { if (level != SmtLevel && level != CoreLevel) throw Error(ERR_BAD_PARAMETER); if (!x2APIC_supported_) throw Error(ERR_X2APIC_IS_NOT_SUPPORTED); return (level == CoreLevel) ? numCores_[level - 1] / numCores_[SmtLevel - 1] : numCores_[level - 1]; } unsigned int getDataCacheLevels() const { return dataCacheLevels_; } unsigned int getCoresSharingDataCache(unsigned int i) const { if (i >= dataCacheLevels_) throw Error(ERR_BAD_PARAMETER); return coresSharignDataCache_[i]; } unsigned int getDataCacheSize(unsigned int i) const { if (i >= dataCacheLevels_) throw Error(ERR_BAD_PARAMETER); return dataCacheSize_[i]; } /* data[] = { eax, ebx, ecx, edx } */ static inline void getCpuid(unsigned int eaxIn, unsigned int data[4]) { #ifdef XBYAK_INTEL_CPU_SPECIFIC #ifdef _MSC_VER __cpuid(reinterpret_cast(data), eaxIn); #else __cpuid(eaxIn, data[0], data[1], data[2], data[3]); #endif #else (void)eaxIn; (void)data; #endif } static inline void getCpuidEx(unsigned int eaxIn, unsigned int ecxIn, unsigned int data[4]) { #ifdef XBYAK_INTEL_CPU_SPECIFIC #ifdef _MSC_VER __cpuidex(reinterpret_cast(data), eaxIn, ecxIn); #else __cpuid_count(eaxIn, ecxIn, data[0], data[1], data[2], data[3]); #endif #else (void)eaxIn; (void)ecxIn; (void)data; #endif } static inline uint64 getXfeature() { #ifdef XBYAK_INTEL_CPU_SPECIFIC #ifdef _MSC_VER return _xgetbv(0); #else unsigned int eax, edx; // xgetvb is not support on gcc 4.2 // __asm__ volatile("xgetbv" : "=a"(eax), "=d"(edx) : "c"(0)); __asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(0)); return ((uint64)edx << 32) | eax; #endif #else return 0; #endif } typedef uint64 Type; static const Type NONE = 0; static const Type tMMX = 1 << 0; static const Type tMMX2 = 1 << 1; static const Type tCMOV = 1 << 2; static const Type tSSE = 1 << 3; static const Type tSSE2 = 1 << 4; static const Type tSSE3 = 1 << 5; static const Type tSSSE3 = 1 << 6; static const Type tSSE41 = 1 << 7; static const Type tSSE42 = 1 << 8; static const Type tPOPCNT = 1 << 9; static const Type tAESNI = 1 << 10; static const Type tSSE5 = 1 << 11; static const Type tOSXSAVE = 1 << 12; static const Type tPCLMULQDQ = 1 << 13; static const Type tAVX = 1 << 14; static const Type tFMA = 1 << 15; static const Type t3DN = 1 << 16; static const Type tE3DN = 1 << 17; static const Type tSSE4a = 1 << 18; static const Type tRDTSCP = 1 << 19; static const Type tAVX2 = 1 << 20; static const Type tBMI1 = 1 << 21; // andn, bextr, blsi, blsmsk, blsr, tzcnt static const Type tBMI2 = 1 << 22; // bzhi, mulx, pdep, pext, rorx, sarx, shlx, shrx static const Type tLZCNT = 1 << 23; static const Type tINTEL = 1 << 24; static const Type tAMD = 1 << 25; static const Type tENHANCED_REP = 1 << 26; // enhanced rep movsb/stosb static const Type tRDRAND = 1 << 27; static const Type tADX = 1 << 28; // adcx, adox static const Type tRDSEED = 1 << 29; // rdseed static const Type tSMAP = 1 << 30; // stac static const Type tHLE = uint64(1) << 31; // xacquire, xrelease, xtest static const Type tRTM = uint64(1) << 32; // xbegin, xend, xabort static const Type tF16C = uint64(1) << 33; // vcvtph2ps, vcvtps2ph static const Type tMOVBE = uint64(1) << 34; // mobve static const Type tAVX512F = uint64(1) << 35; static const Type tAVX512DQ = uint64(1) << 36; static const Type tAVX512_IFMA = uint64(1) << 37; static const Type tAVX512IFMA = tAVX512_IFMA; static const Type tAVX512PF = uint64(1) << 38; static const Type tAVX512ER = uint64(1) << 39; static const Type tAVX512CD = uint64(1) << 40; static const Type tAVX512BW = uint64(1) << 41; static const Type tAVX512VL = uint64(1) << 42; static const Type tAVX512_VBMI = uint64(1) << 43; static const Type tAVX512VBMI = tAVX512_VBMI; // changed by Intel's manual static const Type tAVX512_4VNNIW = uint64(1) << 44; static const Type tAVX512_4FMAPS = uint64(1) << 45; static const Type tPREFETCHWT1 = uint64(1) << 46; static const Type tPREFETCHW = uint64(1) << 47; static const Type tSHA = uint64(1) << 48; static const Type tMPX = uint64(1) << 49; static const Type tAVX512_VBMI2 = uint64(1) << 50; static const Type tGFNI = uint64(1) << 51; static const Type tVAES = uint64(1) << 52; static const Type tVPCLMULQDQ = uint64(1) << 53; static const Type tAVX512_VNNI = uint64(1) << 54; static const Type tAVX512_BITALG = uint64(1) << 55; static const Type tAVX512_VPOPCNTDQ = uint64(1) << 56; Cpu() : type_(NONE) , x2APIC_supported_(false) , numCores_() , dataCacheSize_() , coresSharignDataCache_() , dataCacheLevels_(0) { unsigned int data[4] = {}; const unsigned int& EAX = data[0]; const unsigned int& EBX = data[1]; const unsigned int& ECX = data[2]; const unsigned int& EDX = data[3]; getCpuid(0, data); const unsigned int maxNum = EAX; static const char intel[] = "ntel"; static const char amd[] = "cAMD"; if (ECX == get32bitAsBE(amd)) { type_ |= tAMD; getCpuid(0x80000001, data); if (EDX & (1U << 31)) type_ |= t3DN; if (EDX & (1U << 15)) type_ |= tCMOV; if (EDX & (1U << 30)) type_ |= tE3DN; if (EDX & (1U << 22)) type_ |= tMMX2; if (EDX & (1U << 27)) type_ |= tRDTSCP; } if (ECX == get32bitAsBE(intel)) { type_ |= tINTEL; getCpuid(0x80000001, data); if (EDX & (1U << 27)) type_ |= tRDTSCP; if (ECX & (1U << 5)) type_ |= tLZCNT; if (ECX & (1U << 8)) type_ |= tPREFETCHW; } getCpuid(1, data); if (ECX & (1U << 0)) type_ |= tSSE3; if (ECX & (1U << 9)) type_ |= tSSSE3; if (ECX & (1U << 19)) type_ |= tSSE41; if (ECX & (1U << 20)) type_ |= tSSE42; if (ECX & (1U << 22)) type_ |= tMOVBE; if (ECX & (1U << 23)) type_ |= tPOPCNT; if (ECX & (1U << 25)) type_ |= tAESNI; if (ECX & (1U << 1)) type_ |= tPCLMULQDQ; if (ECX & (1U << 27)) type_ |= tOSXSAVE; if (ECX & (1U << 30)) type_ |= tRDRAND; if (ECX & (1U << 29)) type_ |= tF16C; if (EDX & (1U << 15)) type_ |= tCMOV; if (EDX & (1U << 23)) type_ |= tMMX; if (EDX & (1U << 25)) type_ |= tMMX2 | tSSE; if (EDX & (1U << 26)) type_ |= tSSE2; if (type_ & tOSXSAVE) { // check XFEATURE_ENABLED_MASK[2:1] = '11b' uint64 bv = getXfeature(); if ((bv & 6) == 6) { if (ECX & (1U << 28)) type_ |= tAVX; if (ECX & (1U << 12)) type_ |= tFMA; if (((bv >> 5) & 7) == 7) { getCpuidEx(7, 0, data); if (EBX & (1U << 16)) type_ |= tAVX512F; if (type_ & tAVX512F) { if (EBX & (1U << 17)) type_ |= tAVX512DQ; if (EBX & (1U << 21)) type_ |= tAVX512_IFMA; if (EBX & (1U << 26)) type_ |= tAVX512PF; if (EBX & (1U << 27)) type_ |= tAVX512ER; if (EBX & (1U << 28)) type_ |= tAVX512CD; if (EBX & (1U << 30)) type_ |= tAVX512BW; if (EBX & (1U << 31)) type_ |= tAVX512VL; if (ECX & (1U << 1)) type_ |= tAVX512_VBMI; if (ECX & (1U << 6)) type_ |= tAVX512_VBMI2; if (ECX & (1U << 8)) type_ |= tGFNI; if (ECX & (1U << 9)) type_ |= tVAES; if (ECX & (1U << 10)) type_ |= tVPCLMULQDQ; if (ECX & (1U << 11)) type_ |= tAVX512_VNNI; if (ECX & (1U << 12)) type_ |= tAVX512_BITALG; if (ECX & (1U << 14)) type_ |= tAVX512_VPOPCNTDQ; if (EDX & (1U << 2)) type_ |= tAVX512_4VNNIW; if (EDX & (1U << 3)) type_ |= tAVX512_4FMAPS; } } } } if (maxNum >= 7) { getCpuidEx(7, 0, data); if (type_ & tAVX && (EBX & (1U << 5))) type_ |= tAVX2; if (EBX & (1U << 3)) type_ |= tBMI1; if (EBX & (1U << 8)) type_ |= tBMI2; if (EBX & (1U << 9)) type_ |= tENHANCED_REP; if (EBX & (1U << 18)) type_ |= tRDSEED; if (EBX & (1U << 19)) type_ |= tADX; if (EBX & (1U << 20)) type_ |= tSMAP; if (EBX & (1U << 4)) type_ |= tHLE; if (EBX & (1U << 11)) type_ |= tRTM; if (EBX & (1U << 14)) type_ |= tMPX; if (EBX & (1U << 29)) type_ |= tSHA; if (ECX & (1U << 0)) type_ |= tPREFETCHWT1; } setFamily(); setNumCores(); setCacheHierarchy(); } void putFamily() const { printf("family=%d, model=%X, stepping=%d, extFamily=%d, extModel=%X\n", family, model, stepping, extFamily, extModel); printf("display:family=%X, model=%X\n", displayFamily, displayModel); } bool has(Type type) const { return (type & type_) != 0; } }; class Clock { public: static inline uint64 getRdtsc() { #ifdef XBYAK_INTEL_CPU_SPECIFIC #ifdef _MSC_VER return __rdtsc(); #else unsigned int eax, edx; __asm__ volatile("rdtsc" : "=a"(eax), "=d"(edx)); return ((uint64)edx << 32) | eax; #endif #else // TODO: Need another impl of Clock or rdtsc-equivalent for non-x86 cpu return 0; #endif } Clock() : clock_(0) , count_(0) { } void begin() { clock_ -= getRdtsc(); } void end() { clock_ += getRdtsc(); count_++; } int getCount() const { return count_; } uint64 getClock() const { return clock_; } void clear() { count_ = 0; clock_ = 0; } private: uint64 clock_; int count_; }; #ifdef XBYAK64 const int UseRCX = 1 << 6; const int UseRDX = 1 << 7; class Pack { static const size_t maxTblNum = 15; const Xbyak::Reg64 *tbl_[maxTblNum]; size_t n_; public: Pack() : tbl_(), n_(0) {} Pack(const Xbyak::Reg64 *tbl, size_t n) { init(tbl, n); } Pack(const Pack& rhs) : n_(rhs.n_) { for (size_t i = 0; i < n_; i++) tbl_[i] = rhs.tbl_[i]; } Pack& operator=(const Pack& rhs) { n_ = rhs.n_; for (size_t i = 0; i < n_; i++) tbl_[i] = rhs.tbl_[i]; return *this; } Pack(const Xbyak::Reg64& t0) { n_ = 1; tbl_[0] = &t0; } Pack(const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 2; tbl_[0] = &t0; tbl_[1] = &t1; } Pack(const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 3; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; } Pack(const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 4; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; } Pack(const Xbyak::Reg64& t4, const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 5; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; tbl_[4] = &t4; } Pack(const Xbyak::Reg64& t5, const Xbyak::Reg64& t4, const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 6; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; tbl_[4] = &t4; tbl_[5] = &t5; } Pack(const Xbyak::Reg64& t6, const Xbyak::Reg64& t5, const Xbyak::Reg64& t4, const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 7; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; tbl_[4] = &t4; tbl_[5] = &t5; tbl_[6] = &t6; } Pack(const Xbyak::Reg64& t7, const Xbyak::Reg64& t6, const Xbyak::Reg64& t5, const Xbyak::Reg64& t4, const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 8; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; tbl_[4] = &t4; tbl_[5] = &t5; tbl_[6] = &t6; tbl_[7] = &t7; } Pack(const Xbyak::Reg64& t8, const Xbyak::Reg64& t7, const Xbyak::Reg64& t6, const Xbyak::Reg64& t5, const Xbyak::Reg64& t4, const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 9; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; tbl_[4] = &t4; tbl_[5] = &t5; tbl_[6] = &t6; tbl_[7] = &t7; tbl_[8] = &t8; } Pack(const Xbyak::Reg64& t9, const Xbyak::Reg64& t8, const Xbyak::Reg64& t7, const Xbyak::Reg64& t6, const Xbyak::Reg64& t5, const Xbyak::Reg64& t4, const Xbyak::Reg64& t3, const Xbyak::Reg64& t2, const Xbyak::Reg64& t1, const Xbyak::Reg64& t0) { n_ = 10; tbl_[0] = &t0; tbl_[1] = &t1; tbl_[2] = &t2; tbl_[3] = &t3; tbl_[4] = &t4; tbl_[5] = &t5; tbl_[6] = &t6; tbl_[7] = &t7; tbl_[8] = &t8; tbl_[9] = &t9; } Pack& append(const Xbyak::Reg64& t) { if (n_ == maxTblNum) { fprintf(stderr, "ERR Pack::can't append\n"); throw Error(ERR_BAD_PARAMETER); } tbl_[n_++] = &t; return *this; } void init(const Xbyak::Reg64 *tbl, size_t n) { if (n > maxTblNum) { fprintf(stderr, "ERR Pack::init bad n=%d\n", (int)n); throw Error(ERR_BAD_PARAMETER); } n_ = n; for (size_t i = 0; i < n; i++) { tbl_[i] = &tbl[i]; } } const Xbyak::Reg64& operator[](size_t n) const { if (n >= n_) { fprintf(stderr, "ERR Pack bad n=%d(%d)\n", (int)n, (int)n_); throw Error(ERR_BAD_PARAMETER); } return *tbl_[n]; } size_t size() const { return n_; } /* get tbl[pos, pos + num) */ Pack sub(size_t pos, size_t num = size_t(-1)) const { if (num == size_t(-1)) num = n_ - pos; if (pos + num > n_) { fprintf(stderr, "ERR Pack::sub bad pos=%d, num=%d\n", (int)pos, (int)num); throw Error(ERR_BAD_PARAMETER); } Pack pack; pack.n_ = num; for (size_t i = 0; i < num; i++) { pack.tbl_[i] = tbl_[pos + i]; } return pack; } void put() const { for (size_t i = 0; i < n_; i++) { printf("%s ", tbl_[i]->toString()); } printf("\n"); } }; class StackFrame { #ifdef XBYAK64_WIN static const int noSaveNum = 6; static const int rcxPos = 0; static const int rdxPos = 1; #else static const int noSaveNum = 8; static const int rcxPos = 3; static const int rdxPos = 2; #endif static const int maxRegNum = 14; // maxRegNum = 16 - rsp - rax Xbyak::CodeGenerator *code_; int pNum_; int tNum_; bool useRcx_; bool useRdx_; int saveNum_; int P_; bool makeEpilog_; Xbyak::Reg64 pTbl_[4]; Xbyak::Reg64 tTbl_[maxRegNum]; Pack p_; Pack t_; StackFrame(const StackFrame&); void operator=(const StackFrame&); public: const Pack& p; const Pack& t; /* make stack frame @param sf [in] this @param pNum [in] num of function parameter(0 <= pNum <= 4) @param tNum [in] num of temporary register(0 <= tNum, with UseRCX, UseRDX) #{pNum + tNum [+rcx] + [rdx]} <= 14 @param stackSizeByte [in] local stack size @param makeEpilog [in] automatically call close() if true you can use rax gp0, ..., gp(pNum - 1) gt0, ..., gt(tNum-1) rcx if tNum & UseRCX rdx if tNum & UseRDX rsp[0..stackSizeByte - 1] */ StackFrame(Xbyak::CodeGenerator *code, int pNum, int tNum = 0, int stackSizeByte = 0, bool makeEpilog = true) : code_(code) , pNum_(pNum) , tNum_(tNum & ~(UseRCX | UseRDX)) , useRcx_((tNum & UseRCX) != 0) , useRdx_((tNum & UseRDX) != 0) , saveNum_(0) , P_(0) , makeEpilog_(makeEpilog) , p(p_) , t(t_) { using namespace Xbyak; if (pNum < 0 || pNum > 4) throw Error(ERR_BAD_PNUM); const int allRegNum = pNum + tNum_ + (useRcx_ ? 1 : 0) + (useRdx_ ? 1 : 0); if (tNum_ < 0 || allRegNum > maxRegNum) throw Error(ERR_BAD_TNUM); const Reg64& _rsp = code->rsp; saveNum_ = (std::max)(0, allRegNum - noSaveNum); const int *tbl = getOrderTbl() + noSaveNum; for (int i = 0; i < saveNum_; i++) { code->push(Reg64(tbl[i])); } P_ = (stackSizeByte + 7) / 8; if (P_ > 0 && (P_ & 1) == (saveNum_ & 1)) P_++; // (rsp % 16) == 8, then increment P_ for 16 byte alignment P_ *= 8; if (P_ > 0) code->sub(_rsp, P_); int pos = 0; for (int i = 0; i < pNum; i++) { pTbl_[i] = Xbyak::Reg64(getRegIdx(pos)); } for (int i = 0; i < tNum_; i++) { tTbl_[i] = Xbyak::Reg64(getRegIdx(pos)); } if (useRcx_ && rcxPos < pNum) code_->mov(code_->r10, code_->rcx); if (useRdx_ && rdxPos < pNum) code_->mov(code_->r11, code_->rdx); p_.init(pTbl_, pNum); t_.init(tTbl_, tNum_); } /* make epilog manually @param callRet [in] call ret() if true */ void close(bool callRet = true) { using namespace Xbyak; const Reg64& _rsp = code_->rsp; const int *tbl = getOrderTbl() + noSaveNum; if (P_ > 0) code_->add(_rsp, P_); for (int i = 0; i < saveNum_; i++) { code_->pop(Reg64(tbl[saveNum_ - 1 - i])); } if (callRet) code_->ret(); } ~StackFrame() { if (!makeEpilog_) return; try { close(); } catch (std::exception& e) { printf("ERR:StackFrame %s\n", e.what()); //exit(1); } } private: const int *getOrderTbl() const { using namespace Xbyak; static const int tbl[] = { #ifdef XBYAK64_WIN Operand::RCX, Operand::RDX, Operand::R8, Operand::R9, Operand::R10, Operand::R11, Operand::RDI, Operand::RSI, #else Operand::RDI, Operand::RSI, Operand::RDX, Operand::RCX, Operand::R8, Operand::R9, Operand::R10, Operand::R11, #endif Operand::RBX, Operand::RBP, Operand::R12, Operand::R13, Operand::R14, Operand::R15 }; return &tbl[0]; } int getRegIdx(int& pos) const { assert(pos < maxRegNum); using namespace Xbyak; const int *tbl = getOrderTbl(); int r = tbl[pos++]; if (useRcx_) { if (r == Operand::RCX) { return Operand::R10; } if (r == Operand::R10) { r = tbl[pos++]; } } if (useRdx_) { if (r == Operand::RDX) { return Operand::R11; } if (r == Operand::R11) { return tbl[pos++]; } } return r; } }; #endif } } // end of util #endif