/******************************************************************************* * Copyright 2016-2019 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /******************************************************************************* * Copyright (c) 2007 MITSUNARI Shigeo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * Neither the name of the copyright owner nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #pragma once #ifndef XBYAK_XBYAK_H_ #define XBYAK_XBYAK_H_ /*! @file xbyak.h @brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++ @author herumi @url https://github.com/herumi/xbyak @note modified new BSD license http://opensource.org/licenses/BSD-3-Clause */ #ifndef XBYAK_NO_OP_NAMES #if not +0 // trick to detect whether 'not' is operator or not #error "use -fno-operator-names option if you want to use and(), or(), xor(), not() as function names, Or define XBYAK_NO_OP_NAMES and use and_(), or_(), xor_(), not_()." #endif #endif #include // for debug print #include #include #include #include #ifndef NDEBUG #include #endif // #define XBYAK_DISABLE_AVX512 //#define XBYAK_USE_MMAP_ALLOCATOR #if !defined(__GNUC__) || defined(__MINGW32__) #undef XBYAK_USE_MMAP_ALLOCATOR #endif #ifdef __GNUC__ #define XBYAK_GNUC_PREREQ(major, minor) ((__GNUC__) * 100 + (__GNUC_MINOR__) >= (major) * 100 + (minor)) #else #define XBYAK_GNUC_PREREQ(major, minor) 0 #endif // This covers -std=(gnu|c)++(0x|11|1y), -stdlib=libc++, and modern Microsoft. #if ((defined(_MSC_VER) && (_MSC_VER >= 1600)) || defined(_LIBCPP_VERSION) ||\ ((__cplusplus >= 201103) || defined(__GXX_EXPERIMENTAL_CXX0X__))) #include #define XBYAK_STD_UNORDERED_SET std::unordered_set #include #define XBYAK_STD_UNORDERED_MAP std::unordered_map #define XBYAK_STD_UNORDERED_MULTIMAP std::unordered_multimap /* Clang/llvm-gcc and ICC-EDG in 'GCC-mode' always claim to be GCC 4.2, using libstdcxx 20070719 (from GCC 4.2.1, the last GPL 2 version). */ #elif XBYAK_GNUC_PREREQ(4, 5) || (XBYAK_GNUC_PREREQ(4, 2) && __GLIBCXX__ >= 20070719) || defined(__INTEL_COMPILER) || defined(__llvm__) #include #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set #include #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap #elif defined(_MSC_VER) && (_MSC_VER >= 1500) && (_MSC_VER < 1600) #include #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set #include #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap #else #include #define XBYAK_STD_UNORDERED_SET std::set #include #define XBYAK_STD_UNORDERED_MAP std::map #define XBYAK_STD_UNORDERED_MULTIMAP std::multimap #endif #ifdef _WIN32 #include #include #include #elif defined(__GNUC__) #include #include #include #endif #if !defined(_MSC_VER) || (_MSC_VER >= 1600) #include #endif #if defined(_WIN64) || defined(__MINGW64__) || (defined(__CYGWIN__) && defined(__x86_64__)) #define XBYAK64_WIN #elif defined(__x86_64__) #define XBYAK64_GCC #endif #if !defined(XBYAK64) && !defined(XBYAK32) #if defined(XBYAK64_GCC) || defined(XBYAK64_WIN) #define XBYAK64 #else #define XBYAK32 #endif #endif #if (__cplusplus >= 201103) || (_MSC_VER >= 1800) #define XBYAK_VARIADIC_TEMPLATE #endif #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4514) /* remove inline function */ #pragma warning(disable : 4786) /* identifier is too long */ #pragma warning(disable : 4503) /* name is too long */ #pragma warning(disable : 4127) /* constant expresison */ #endif namespace Xbyak { enum { DEFAULT_MAX_CODE_SIZE = 4096, VERSION = 0x5760 /* 0xABCD = A.BC(D) */ }; #ifndef MIE_INTEGER_TYPE_DEFINED #define MIE_INTEGER_TYPE_DEFINED #ifdef _MSC_VER typedef unsigned __int64 uint64; typedef __int64 sint64; #else typedef uint64_t uint64; typedef int64_t sint64; #endif typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; #endif #ifndef MIE_ALIGN #ifdef _MSC_VER #define MIE_ALIGN(x) __declspec(align(x)) #else #define MIE_ALIGN(x) __attribute__((aligned(x))) #endif #endif #ifndef MIE_PACK // for shufps #define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w)) #endif enum { ERR_NONE = 0, ERR_BAD_ADDRESSING, ERR_CODE_IS_TOO_BIG, ERR_BAD_SCALE, ERR_ESP_CANT_BE_INDEX, ERR_BAD_COMBINATION, ERR_BAD_SIZE_OF_REGISTER, ERR_IMM_IS_TOO_BIG, ERR_BAD_ALIGN, ERR_LABEL_IS_REDEFINED, ERR_LABEL_IS_TOO_FAR, ERR_LABEL_IS_NOT_FOUND, ERR_CODE_ISNOT_COPYABLE, ERR_BAD_PARAMETER, ERR_CANT_PROTECT, ERR_CANT_USE_64BIT_DISP, ERR_OFFSET_IS_TOO_BIG, ERR_MEM_SIZE_IS_NOT_SPECIFIED, ERR_BAD_MEM_SIZE, ERR_BAD_ST_COMBINATION, ERR_OVER_LOCAL_LABEL, // not used ERR_UNDER_LOCAL_LABEL, ERR_CANT_ALLOC, ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW, ERR_BAD_PROTECT_MODE, ERR_BAD_PNUM, ERR_BAD_TNUM, ERR_BAD_VSIB_ADDRESSING, ERR_CANT_CONVERT, ERR_LABEL_ISNOT_SET_BY_L, ERR_LABEL_IS_ALREADY_SET_BY_L, ERR_BAD_LABEL_STR, ERR_MUNMAP, ERR_OPMASK_IS_ALREADY_SET, ERR_ROUNDING_IS_ALREADY_SET, ERR_K0_IS_INVALID, ERR_EVEX_IS_INVALID, ERR_SAE_IS_INVALID, ERR_ER_IS_INVALID, ERR_INVALID_BROADCAST, ERR_INVALID_OPMASK_WITH_MEMORY, ERR_INVALID_ZERO, ERR_INVALID_RIP_IN_AUTO_GROW, ERR_INVALID_MIB_ADDRESS, ERR_INTERNAL, ERR_X2APIC_IS_NOT_SUPPORTED }; class Error : public std::exception { int err_; public: explicit Error(int err) : err_(err) { if (err_ < 0 || err_ > ERR_INTERNAL) { fprintf(stderr, "bad err=%d in Xbyak::Error\n", err_); //exit(1); } } operator int() const { return err_; } const char *what() const throw() { static const char *errTbl[] = { "none", "bad addressing", "code is too big", "bad scale", "esp can't be index", "bad combination", "bad size of register", "imm is too big", "bad align", "label is redefined", "label is too far", "label is not found", "code is not copyable", "bad parameter", "can't protect", "can't use 64bit disp(use (void*))", "offset is too big", "MEM size is not specified", "bad mem size", "bad st combination", "over local label", "under local label", "can't alloc", "T_SHORT is not supported in AutoGrow", "bad protect mode", "bad pNum", "bad tNum", "bad vsib addressing", "can't convert", "label is not set by L()", "label is already set by L()", "bad label string", "err munmap", "opmask is already set", "rounding is already set", "k0 is invalid", "evex is invalid", "sae(suppress all exceptions) is invalid", "er(embedded rounding) is invalid", "invalid broadcast", "invalid opmask with memory", "invalid zero", "invalid rip in AutoGrow", "invalid mib address", "internal error", "x2APIC is not supported" }; assert((size_t)err_ < sizeof(errTbl) / sizeof(*errTbl)); return errTbl[err_]; } }; inline const char *ConvertErrorToString(const Error& err) { return err.what(); } inline void *AlignedMalloc(size_t size, size_t alignment) { #ifdef __MINGW32__ return __mingw_aligned_malloc(size, alignment); #elif defined(_WIN32) return _aligned_malloc(size, alignment); #else void *p; int ret = posix_memalign(&p, alignment, size); return (ret == 0) ? p : 0; #endif } inline void AlignedFree(void *p) { #ifdef __MINGW32__ __mingw_aligned_free(p); #elif defined(_MSC_VER) _aligned_free(p); #else free(p); #endif } template inline const To CastTo(From p) throw() { return (const To)(size_t)(p); } namespace inner { static const size_t ALIGN_PAGE_SIZE = 4096; inline bool IsInDisp8(uint32 x) { return 0xFFFFFF80 <= x || x <= 0x7F; } inline bool IsInInt32(uint64 x) { return ~uint64(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; } inline uint32 VerifyInInt32(uint64 x) { #ifdef XBYAK64 if (!IsInInt32(x)) throw Error(ERR_OFFSET_IS_TOO_BIG); #endif return static_cast(x); } enum LabelMode { LasIs, // as is Labs, // absolute LaddTop // (addr + top) for mov(reg, label) with AutoGrow }; } // inner /* custom allocator */ struct Allocator { virtual uint8 *alloc(size_t size) { return reinterpret_cast(AlignedMalloc(size, inner::ALIGN_PAGE_SIZE)); } virtual void free(uint8 *p) { AlignedFree(p); } virtual ~Allocator() {} /* override to return false if you call protect() manually */ virtual bool useProtect() const { return true; } }; #ifdef XBYAK_USE_MMAP_ALLOCATOR class MmapAllocator : Allocator { typedef XBYAK_STD_UNORDERED_MAP SizeList; SizeList sizeList_; public: uint8 *alloc(size_t size) { const size_t alignedSizeM1 = inner::ALIGN_PAGE_SIZE - 1; size = (size + alignedSizeM1) & ~alignedSizeM1; #ifdef MAP_ANONYMOUS const int mode = MAP_PRIVATE | MAP_ANONYMOUS; #elif defined(MAP_ANON) const int mode = MAP_PRIVATE | MAP_ANON; #else #error "not supported" #endif void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, mode, -1, 0); if (p == MAP_FAILED) throw Error(ERR_CANT_ALLOC); assert(p); sizeList_[(uintptr_t)p] = size; return (uint8*)p; } void free(uint8 *p) { if (p == 0) return; SizeList::iterator i = sizeList_.find((uintptr_t)p); if (i == sizeList_.end()) throw Error(ERR_BAD_PARAMETER); if (munmap((void*)i->first, i->second) < 0) throw Error(ERR_MUNMAP); sizeList_.erase(i); } }; #endif class Address; class Reg; class Operand { static const uint8 EXT8BIT = 0x20; unsigned int idx_:6; // 0..31 + EXT8BIT = 1 if spl/bpl/sil/dil unsigned int kind_:9; unsigned int bit_:10; protected: unsigned int zero_:1; unsigned int mask_:3; unsigned int rounding_:3; void setIdx(int idx) { idx_ = idx; } public: enum Kind { NONE = 0, MEM = 1 << 0, REG = 1 << 1, MMX = 1 << 2, FPU = 1 << 3, XMM = 1 << 4, YMM = 1 << 5, ZMM = 1 << 6, OPMASK = 1 << 7, BNDREG = 1 << 8 }; enum Code { #ifdef XBYAK64 RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D, R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W, R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B, SPL = 4, BPL, SIL, DIL, #endif EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI, AX = 0, CX, DX, BX, SP, BP, SI, DI, AL = 0, CL, DL, BL, AH, CH, DH, BH }; Operand() : idx_(0), kind_(0), bit_(0), zero_(0), mask_(0), rounding_(0) { } Operand(int idx, Kind kind, int bit, bool ext8bit = 0) : idx_(static_cast(idx | (ext8bit ? EXT8BIT : 0))) , kind_(kind) , bit_(bit) , zero_(0), mask_(0), rounding_(0) { assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two } Kind getKind() const { return static_cast(kind_); } int getIdx() const { return idx_ & (EXT8BIT - 1); } bool isNone() const { return kind_ == 0; } bool isMMX() const { return is(MMX); } bool isXMM() const { return is(XMM); } bool isYMM() const { return is(YMM); } bool isZMM() const { return is(ZMM); } bool isXMEM() const { return is(XMM | MEM); } bool isYMEM() const { return is(YMM | MEM); } bool isZMEM() const { return is(ZMM | MEM); } bool isOPMASK() const { return is(OPMASK); } bool isBNDREG() const { return is(BNDREG); } bool isREG(int bit = 0) const { return is(REG, bit); } bool isMEM(int bit = 0) const { return is(MEM, bit); } bool isFPU() const { return is(FPU); } bool isExt8bit() const { return (idx_ & EXT8BIT) != 0; } bool isExtIdx() const { return (getIdx() & 8) != 0; } bool isExtIdx2() const { return (getIdx() & 16) != 0; } bool hasEvex() const { return isZMM() || isExtIdx2() || getOpmaskIdx() || getRounding(); } bool hasRex() const { return isExt8bit() || isREG(64) || isExtIdx(); } bool hasZero() const { return zero_; } int getOpmaskIdx() const { return mask_; } int getRounding() const { return rounding_; } void setKind(Kind kind) { if ((kind & (XMM|YMM|ZMM)) == 0) return; kind_ = kind; bit_ = kind == XMM ? 128 : kind == YMM ? 256 : 512; } void setBit(int bit) { bit_ = bit; } void setOpmaskIdx(int idx, bool ignore_idx0 = false) { if (!ignore_idx0 && idx == 0) throw Error(ERR_K0_IS_INVALID); if (mask_) throw Error(ERR_OPMASK_IS_ALREADY_SET); mask_ = idx; } void setRounding(int idx) { if (rounding_) throw Error(ERR_ROUNDING_IS_ALREADY_SET); rounding_ = idx; } void setZero() { zero_ = true; } // ah, ch, dh, bh? bool isHigh8bit() const { if (!isBit(8)) return false; if (isExt8bit()) return false; const int idx = getIdx(); return AH <= idx && idx <= BH; } // any bit is accetable if bit == 0 bool is(int kind, uint32 bit = 0) const { return (kind == 0 || (kind_ & kind)) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16) } bool isBit(uint32 bit) const { return (bit_ & bit) != 0; } uint32 getBit() const { return bit_; } const char *toString() const { const int idx = getIdx(); if (kind_ == REG) { if (isExt8bit()) { static const char *tbl[4] = { "spl", "bpl", "sil", "dil" }; return tbl[idx - 4]; } static const char *tbl[4][16] = { { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" }, { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" }, { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" }, { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }, }; return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx]; } else if (isOPMASK()) { static const char *tbl[8] = { "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }; return tbl[idx]; } else if (isZMM()) { static const char *tbl[32] = { "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15", "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31" }; return tbl[idx]; } else if (isYMM()) { static const char *tbl[32] = { "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15", "ymm16", "ymm17", "ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25", "ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31" }; return tbl[idx]; } else if (isXMM()) { static const char *tbl[32] = { "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "xmm16", "xmm17", "xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25", "xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31" }; return tbl[idx]; } else if (isMMX()) { static const char *tbl[8] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" }; return tbl[idx]; } else if (isFPU()) { static const char *tbl[8] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" }; return tbl[idx]; } else if (isBNDREG()) { static const char *tbl[4] = { "bnd0", "bnd1", "bnd2", "bnd3" }; return tbl[idx]; } throw Error(ERR_INTERNAL); } bool isEqualIfNotInherited(const Operand& rhs) const { return idx_ == rhs.idx_ && kind_ == rhs.kind_ && bit_ == rhs.bit_ && zero_ == rhs.zero_ && mask_ == rhs.mask_ && rounding_ == rhs.rounding_; } bool operator==(const Operand& rhs) const; bool operator!=(const Operand& rhs) const { return !operator==(rhs); } const Address& getAddress() const; const Reg& getReg() const; }; class Label; struct Reg8; struct Reg16; struct Reg32; #ifdef XBYAK64 struct Reg64; #endif class Reg : public Operand { public: Reg() { } Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { } Reg changeBit(int bit) const { return Reg(getIdx(), getKind(), bit, isExt8bit()); } uint8 getRexW() const { return isREG(64) ? 8 : 0; } uint8 getRexR() const { return isExtIdx() ? 4 : 0; } uint8 getRexX() const { return isExtIdx() ? 2 : 0; } uint8 getRexB() const { return isExtIdx() ? 1 : 0; } uint8 getRex(const Reg& base = Reg()) const { uint8 rex = getRexW() | getRexR() | base.getRexW() | base.getRexB(); if (rex || isExt8bit() || base.isExt8bit()) rex |= 0x40; return rex; } Reg8 cvt8() const; Reg16 cvt16() const; Reg32 cvt32() const; #ifdef XBYAK64 Reg64 cvt64() const; #endif }; inline const Reg& Operand::getReg() const { assert(!isMEM()); return static_cast(*this); } struct Reg8 : public Reg { explicit Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { } }; struct Reg16 : public Reg { explicit Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { } }; struct Mmx : public Reg { explicit Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { } }; struct EvexModifierRounding { enum { T_RN_SAE = 1, T_RD_SAE = 2, T_RU_SAE = 3, T_RZ_SAE = 4, T_SAE = 5 }; explicit EvexModifierRounding(int rounding) : rounding(rounding) {} int rounding; }; struct EvexModifierZero{EvexModifierZero() {}}; struct Xmm : public Mmx { explicit Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { } Xmm(Kind kind, int idx) : Mmx(idx, kind, kind == XMM ? 128 : kind == YMM ? 256 : 512) { } Xmm operator|(const EvexModifierRounding& emr) const { Xmm r(*this); r.setRounding(emr.rounding); return r; } Xmm copyAndSetIdx(int idx) const { Xmm ret(*this); ret.setIdx(idx); return ret; } Xmm copyAndSetKind(Operand::Kind kind) const { Xmm ret(*this); ret.setKind(kind); return ret; } }; struct Ymm : public Xmm { explicit Ymm(int idx = 0, Kind kind = Operand::YMM, int bit = 256) : Xmm(idx, kind, bit) { } Ymm operator|(const EvexModifierRounding& emr) const { Ymm r(*this); r.setRounding(emr.rounding); return r; } }; struct Zmm : public Ymm { explicit Zmm(int idx = 0) : Ymm(idx, Operand::ZMM, 512) { } Zmm operator|(const EvexModifierRounding& emr) const { Zmm r(*this); r.setRounding(emr.rounding); return r; } }; struct Opmask : public Reg { explicit Opmask(int idx = 0) : Reg(idx, Operand::OPMASK, 64) {} }; struct BoundsReg : public Reg { explicit BoundsReg(int idx = 0) : Reg(idx, Operand::BNDREG, 128) {} }; templateT operator|(const T& x, const Opmask& k) { T r(x); r.setOpmaskIdx(k.getIdx()); return r; } templateT operator|(const T& x, const EvexModifierZero&) { T r(x); r.setZero(); return r; } templateT operator|(const T& x, const EvexModifierRounding& emr) { T r(x); r.setRounding(emr.rounding); return r; } struct Fpu : public Reg { explicit Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { } }; struct Reg32e : public Reg { explicit Reg32e(int idx, int bit) : Reg(idx, Operand::REG, bit) {} }; struct Reg32 : public Reg32e { explicit Reg32(int idx = 0) : Reg32e(idx, 32) {} }; #ifdef XBYAK64 struct Reg64 : public Reg32e { explicit Reg64(int idx = 0) : Reg32e(idx, 64) {} }; struct RegRip { sint64 disp_; const Label* label_; bool isAddr_; explicit RegRip(sint64 disp = 0, const Label* label = 0, bool isAddr = false) : disp_(disp), label_(label), isAddr_(isAddr) {} friend const RegRip operator+(const RegRip& r, int disp) { return RegRip(r.disp_ + disp, r.label_, r.isAddr_); } friend const RegRip operator-(const RegRip& r, int disp) { return RegRip(r.disp_ - disp, r.label_, r.isAddr_); } friend const RegRip operator+(const RegRip& r, sint64 disp) { return RegRip(r.disp_ + disp, r.label_, r.isAddr_); } friend const RegRip operator-(const RegRip& r, sint64 disp) { return RegRip(r.disp_ - disp, r.label_, r.isAddr_); } friend const RegRip operator+(const RegRip& r, const Label& label) { if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING); return RegRip(r.disp_, &label); } friend const RegRip operator+(const RegRip& r, const void *addr) { if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING); return RegRip(r.disp_ + (sint64)addr, 0, true); } }; #endif inline Reg8 Reg::cvt8() const { const int idx = getIdx(); if (isBit(8)) return Reg8(idx, isExt8bit()); #ifdef XBYAK32 if (idx >= 4) throw Error(ERR_CANT_CONVERT); #endif return Reg8(idx, 4 <= idx && idx < 8); } inline Reg16 Reg::cvt16() const { const int idx = getIdx(); if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT); return Reg16(idx); } inline Reg32 Reg::cvt32() const { const int idx = getIdx(); if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT); return Reg32(idx); } #ifdef XBYAK64 inline Reg64 Reg::cvt64() const { const int idx = getIdx(); if (isBit(8) && (4 <= idx && idx < 8) && !isExt8bit()) throw Error(ERR_CANT_CONVERT); return Reg64(idx); } #endif #ifndef XBYAK_DISABLE_SEGMENT // not derived from Reg class Segment { int idx_; public: enum { es, cs, ss, ds, fs, gs }; explicit Segment(int idx) : idx_(idx) { assert(0 <= idx_ && idx_ < 6); } int getIdx() const { return idx_; } const char *toString() const { static const char tbl[][3] = { "es", "cs", "ss", "ds", "fs", "gs" }; return tbl[idx_]; } }; #endif class RegExp { public: #ifdef XBYAK64 enum { i32e = 32 | 64 }; #else enum { i32e = 32 }; #endif RegExp(size_t disp = 0) : scale_(0), disp_(disp) { } RegExp(const Reg& r, int scale = 1) : scale_(scale) , disp_(0) { if (!r.isREG(i32e) && !r.is(Reg::XMM|Reg::YMM|Reg::ZMM)) throw Error(ERR_BAD_SIZE_OF_REGISTER); if (scale == 0) return; if (scale != 1 && scale != 2 && scale != 4 && scale != 8) throw Error(ERR_BAD_SCALE); if (r.getBit() >= 128 || scale != 1) { // xmm/ymm is always index index_ = r; } else { base_ = r; } } bool isVsib(int bit = 128 | 256 | 512) const { return index_.isBit(bit); } RegExp optimize() const { RegExp exp = *this; // [reg * 2] => [reg + reg] if (index_.isBit(i32e) && !base_.getBit() && scale_ == 2) { exp.base_ = index_; exp.scale_ = 1; } return exp; } bool operator==(const RegExp& rhs) const { return base_ == rhs.base_ && index_ == rhs.index_ && disp_ == rhs.disp_ && scale_ == rhs.scale_; } const Reg& getBase() const { return base_; } const Reg& getIndex() const { return index_; } int getScale() const { return scale_; } size_t getDisp() const { return disp_; } void verify() const { if (base_.getBit() >= 128) throw Error(ERR_BAD_SIZE_OF_REGISTER); if (index_.getBit() && index_.getBit() <= 64) { if (index_.getIdx() == Operand::ESP) throw Error(ERR_ESP_CANT_BE_INDEX); if (base_.getBit() && base_.getBit() != index_.getBit()) throw Error(ERR_BAD_SIZE_OF_REGISTER); } } friend RegExp operator+(const RegExp& a, const RegExp& b); friend RegExp operator-(const RegExp& e, size_t disp); uint8 getRex() const { uint8 rex = index_.getRexX() | base_.getRexB(); return rex ? uint8(rex | 0x40) : 0; } private: /* [base_ + index_ * scale_ + disp_] base : Reg32e, index : Reg32e(w/o esp), Xmm, Ymm */ Reg base_; Reg index_; int scale_; size_t disp_; }; inline RegExp operator+(const RegExp& a, const RegExp& b) { if (a.index_.getBit() && b.index_.getBit()) throw Error(ERR_BAD_ADDRESSING); RegExp ret = a; if (!ret.index_.getBit()) { ret.index_ = b.index_; ret.scale_ = b.scale_; } if (b.base_.getBit()) { if (ret.base_.getBit()) { if (ret.index_.getBit()) throw Error(ERR_BAD_ADDRESSING); // base + base => base + index * 1 ret.index_ = b.base_; // [reg + esp] => [esp + reg] if (ret.index_.getIdx() == Operand::ESP) std::swap(ret.base_, ret.index_); ret.scale_ = 1; } else { ret.base_ = b.base_; } } ret.disp_ += b.disp_; return ret; } inline RegExp operator*(const Reg& r, int scale) { return RegExp(r, scale); } inline RegExp operator-(const RegExp& e, size_t disp) { RegExp ret = e; ret.disp_ -= disp; return ret; } // 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc) void *const AutoGrow = (void*)1; //-V566 void *const DontSetProtectRWE = (void*)2; //-V566 class CodeArray { enum Type { USER_BUF = 1, // use userPtr(non alignment, non protect) ALLOC_BUF, // use new(alignment, protect) AUTO_GROW // automatically move and grow memory if necessary }; CodeArray(const CodeArray& rhs); void operator=(const CodeArray&); bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; } struct AddrInfo { size_t codeOffset; // position to write size_t jmpAddr; // value to write int jmpSize; // size of jmpAddr inner::LabelMode mode; AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode) : codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {} uint64 getVal(const uint8 *top) const { uint64 disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top); if (jmpSize == 4) disp = inner::VerifyInInt32(disp); return disp; } }; typedef std::list AddrInfoList; AddrInfoList addrInfoList_; const Type type_; #ifdef XBYAK_USE_MMAP_ALLOCATOR MmapAllocator defaultAllocator_; #else Allocator defaultAllocator_; #endif Allocator *alloc_; protected: size_t maxSize_; uint8 *top_; size_t size_; bool isCalledCalcJmpAddress_; bool useProtect() const { return alloc_->useProtect(); } /* allocate new memory and copy old data to the new area */ void growMemory() { const size_t newSize = (std::max)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2); uint8 *newTop = alloc_->alloc(newSize); if (newTop == 0) throw Error(ERR_CANT_ALLOC); for (size_t i = 0; i < size_; i++) newTop[i] = top_[i]; alloc_->free(top_); top_ = newTop; maxSize_ = newSize; } /* calc jmp address for AutoGrow mode */ void calcJmpAddress() { if (isCalledCalcJmpAddress_) return; for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) { uint64 disp = i->getVal(top_); rewrite(i->codeOffset, disp, i->jmpSize); } isCalledCalcJmpAddress_ = true; } public: enum ProtectMode { PROTECT_RW = 0, // read/write PROTECT_RWE = 1, // read/write/exec PROTECT_RE = 2 // read/exec }; explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0) : type_(userPtr == AutoGrow ? AUTO_GROW : (userPtr == 0 || userPtr == DontSetProtectRWE) ? ALLOC_BUF : USER_BUF) , alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_) , maxSize_(maxSize) , top_(type_ == USER_BUF ? reinterpret_cast(userPtr) : alloc_->alloc((std::max)(maxSize, 1))) , size_(0) , isCalledCalcJmpAddress_(false) { if (maxSize_ > 0 && top_ == 0) throw Error(ERR_CANT_ALLOC); if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !setProtectMode(PROTECT_RWE, false)) { alloc_->free(top_); throw Error(ERR_CANT_PROTECT); } } virtual ~CodeArray() { if (isAllocType()) { if (useProtect()) setProtectModeRW(false); alloc_->free(top_); } } bool setProtectMode(ProtectMode mode, bool throwException = true) { bool isOK = protect(top_, maxSize_, mode); if (isOK) return true; if (throwException) throw Error(ERR_CANT_PROTECT); return false; } bool setProtectModeRE(bool throwException = true) { return setProtectMode(PROTECT_RE, throwException); } bool setProtectModeRW(bool throwException = true) { return setProtectMode(PROTECT_RW, throwException); } void resetSize() { size_ = 0; addrInfoList_.clear(); isCalledCalcJmpAddress_ = false; } void db(int code) { if (size_ >= maxSize_) { if (type_ == AUTO_GROW) { growMemory(); } else { throw Error(ERR_CODE_IS_TOO_BIG); } } top_[size_++] = static_cast(code); } void db(const uint8 *code, size_t codeSize) { for (size_t i = 0; i < codeSize; i++) db(code[i]); } void db(uint64 code, size_t codeSize) { if (codeSize > 8) throw Error(ERR_BAD_PARAMETER); for (size_t i = 0; i < codeSize; i++) db(static_cast(code >> (i * 8))); } void dw(uint32 code) { db(code, 2); } void dd(uint32 code) { db(code, 4); } void dq(uint64 code) { db(code, 8); } const uint8 *getCode() const { return top_; } template const F getCode() const { return reinterpret_cast(top_); } const uint8 *getCurr() const { return &top_[size_]; } template const F getCurr() const { return reinterpret_cast(&top_[size_]); } size_t getSize() const { return size_; } void setSize(size_t size) { if (size > maxSize_) throw Error(ERR_OFFSET_IS_TOO_BIG); size_ = size; } void dump() const { const uint8 *p = getCode(); size_t bufSize = getSize(); size_t remain = bufSize; for (int i = 0; i < 4; i++) { size_t disp = 16; if (remain < 16) { disp = remain; } for (size_t j = 0; j < 16; j++) { if (j < disp) { printf("%02X", p[i * 16 + j]); } } putchar('\n'); remain -= disp; if (remain == 0) { break; } } } /* @param offset [in] offset from top @param disp [in] offset from the next of jmp @param size [in] write size(1, 2, 4, 8) */ void rewrite(size_t offset, uint64 disp, size_t size) { assert(offset < maxSize_); if (size != 1 && size != 2 && size != 4 && size != 8) throw Error(ERR_BAD_PARAMETER); uint8 *const data = top_ + offset; for (size_t i = 0; i < size; i++) { data[i] = static_cast(disp >> (i * 8)); } } void save(size_t offset, size_t val, int size, inner::LabelMode mode) { addrInfoList_.push_back(AddrInfo(offset, val, size, mode)); } bool isAutoGrow() const { return type_ == AUTO_GROW; } bool isCalledCalcJmpAddress() const { return isCalledCalcJmpAddress_; } /** change exec permission of memory @param addr [in] buffer address @param size [in] buffer size @param protectMode [in] mode(RW/RWE/RE) @return true(success), false(failure) */ static inline bool protect(const void *addr, size_t size, int protectMode) { #if defined(_WIN32) const DWORD c_rw = PAGE_READWRITE; const DWORD c_rwe = PAGE_EXECUTE_READWRITE; const DWORD c_re = PAGE_EXECUTE_READ; DWORD mode; #else const int c_rw = PROT_READ | PROT_WRITE; const int c_rwe = PROT_READ | PROT_WRITE | PROT_EXEC; const int c_re = PROT_READ | PROT_EXEC; int mode; #endif switch (protectMode) { case PROTECT_RW: mode = c_rw; break; case PROTECT_RWE: mode = c_rwe; break; case PROTECT_RE: mode = c_re; break; default: return false; } #if defined(_WIN32) DWORD oldProtect; return VirtualProtect(const_cast(addr), size, mode, &oldProtect) != 0; #elif defined(__GNUC__) size_t pageSize = sysconf(_SC_PAGESIZE); size_t iaddr = reinterpret_cast(addr); size_t roundAddr = iaddr & ~(pageSize - static_cast(1)); #ifndef NDEBUG if (pageSize != 4096) fprintf(stderr, "large page(%zd) is used. not tested enough.\n", pageSize); #endif return mprotect(reinterpret_cast(roundAddr), size + (iaddr - roundAddr), mode) == 0; #else return true; #endif } /** get aligned memory pointer @param addr [in] address @param alignedSize [in] power of two @return aligned addr by alingedSize */ static inline uint8 *getAlignedAddress(uint8 *addr, size_t alignedSize = 16) { return reinterpret_cast((reinterpret_cast(addr) + alignedSize - 1) & ~(alignedSize - static_cast(1))); } }; class Address : public Operand { public: enum Mode { M_ModRM, M_64bitDisp, M_rip, M_ripAddr }; Address(uint32 sizeBit, bool broadcast, const RegExp& e) : Operand(0, MEM, sizeBit), e_(e), label_(0), mode_(M_ModRM), broadcast_(broadcast) { e_.verify(); } #ifdef XBYAK64 explicit Address(size_t disp) : Operand(0, MEM, 64), e_(disp), label_(0), mode_(M_64bitDisp), broadcast_(false){ } Address(uint32 sizeBit, bool broadcast, const RegRip& addr) : Operand(0, MEM, sizeBit), e_(addr.disp_), label_(addr.label_), mode_(addr.isAddr_ ? M_ripAddr : M_rip), broadcast_(broadcast) { } #endif RegExp getRegExp(bool optimize = true) const { return optimize ? e_.optimize() : e_; } Mode getMode() const { return mode_; } bool is32bit() const { return e_.getBase().getBit() == 32 || e_.getIndex().getBit() == 32; } bool isOnlyDisp() const { return !e_.getBase().getBit() && !e_.getIndex().getBit(); } // for mov eax size_t getDisp() const { return e_.getDisp(); } uint8 getRex() const { if (mode_ != M_ModRM) return 0; return getRegExp().getRex(); } bool is64bitDisp() const { return mode_ == M_64bitDisp; } // for moffset bool isBroadcast() const { return broadcast_; } const Label* getLabel() const { return label_; } bool operator==(const Address& rhs) const { return getBit() == rhs.getBit() && e_ == rhs.e_ && label_ == rhs.label_ && mode_ == rhs.mode_ && broadcast_ == rhs.broadcast_; } bool operator!=(const Address& rhs) const { return !operator==(rhs); } bool isVsib() const { return e_.isVsib(); } private: RegExp e_; const Label* label_; Mode mode_; bool broadcast_; }; inline const Address& Operand::getAddress() const { assert(isMEM()); return static_cast(*this); } inline bool Operand::operator==(const Operand& rhs) const { if (isMEM() && rhs.isMEM()) return this->getAddress() == rhs.getAddress(); return isEqualIfNotInherited(rhs); } class AddressFrame { void operator=(const AddressFrame&); AddressFrame(const AddressFrame&); public: const uint32 bit_; const bool broadcast_; explicit AddressFrame(uint32 bit, bool broadcast = false) : bit_(bit), broadcast_(broadcast) { } Address operator[](const RegExp& e) const { return Address(bit_, broadcast_, e); } Address operator[](const void *disp) const { return Address(bit_, broadcast_, RegExp(reinterpret_cast(disp))); } #ifdef XBYAK64 Address operator[](uint64 disp) const { return Address(disp); } Address operator[](const RegRip& addr) const { return Address(bit_, broadcast_, addr); } #endif }; struct JmpLabel { size_t endOfJmp; /* offset from top to the end address of jmp */ int jmpSize; inner::LabelMode mode; size_t disp; // disp for [rip + disp] explicit JmpLabel(size_t endOfJmp = 0, int jmpSize = 0, inner::LabelMode mode = inner::LasIs, size_t disp = 0) : endOfJmp(endOfJmp), jmpSize(jmpSize), mode(mode), disp(disp) { } }; class LabelManager; class Label { mutable LabelManager *mgr; mutable int id; friend class LabelManager; public: Label() : mgr(0), id(0) {} Label(const Label& rhs); Label& operator=(const Label& rhs); ~Label(); void clear() { mgr = 0; id = 0; } int getId() const { return id; } const uint8 *getAddress() const; // backward compatibility static inline std::string toStr(int num) { char buf[16]; #if defined(_MSC_VER) && (_MSC_VER < 1900) _snprintf_s #else snprintf #endif (buf, sizeof(buf), ".%08x", num); return buf; } }; class LabelManager { // for string label struct SlabelVal { size_t offset; SlabelVal(size_t offset) : offset(offset) {} }; typedef XBYAK_STD_UNORDERED_MAP SlabelDefList; typedef XBYAK_STD_UNORDERED_MULTIMAP SlabelUndefList; struct SlabelState { SlabelDefList defList; SlabelUndefList undefList; }; typedef std::list StateList; // for Label class struct ClabelVal { ClabelVal(size_t offset = 0) : offset(offset), refCount(1) {} size_t offset; int refCount; }; typedef XBYAK_STD_UNORDERED_MAP ClabelDefList; typedef XBYAK_STD_UNORDERED_MULTIMAP ClabelUndefList; typedef XBYAK_STD_UNORDERED_SET LabelPtrList; CodeArray *base_; // global : stateList_.front(), local : stateList_.back() StateList stateList_; mutable int labelId_; ClabelDefList clabelDefList_; ClabelUndefList clabelUndefList_; LabelPtrList labelPtrList_; int getId(const Label& label) const { if (label.id == 0) label.id = labelId_++; return label.id; } template void define_inner(DefList& defList, UndefList& undefList, const T& labelId, size_t addrOffset) { // add label typename DefList::value_type item(labelId, addrOffset); std::pair ret = defList.insert(item); if (!ret.second) throw Error(ERR_LABEL_IS_REDEFINED); // search undefined label for (;;) { typename UndefList::iterator itr = undefList.find(labelId); if (itr == undefList.end()) break; const JmpLabel *jmp = &itr->second; const size_t offset = jmp->endOfJmp - jmp->jmpSize; size_t disp; if (jmp->mode == inner::LaddTop) { disp = addrOffset; } else if (jmp->mode == inner::Labs) { disp = size_t(base_->getCurr()); } else { disp = addrOffset - jmp->endOfJmp + jmp->disp; #ifdef XBYAK64 if (jmp->jmpSize <= 4 && !inner::IsInInt32(disp)) throw Error(ERR_OFFSET_IS_TOO_BIG); #endif if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32)disp)) throw Error(ERR_LABEL_IS_TOO_FAR); } if (base_->isAutoGrow()) { base_->save(offset, disp, jmp->jmpSize, jmp->mode); } else { base_->rewrite(offset, disp, jmp->jmpSize); } undefList.erase(itr); } } template bool getOffset_inner(const DefList& defList, size_t *offset, const T& label) const { typename DefList::const_iterator i = defList.find(label); if (i == defList.end()) return false; *offset = i->second.offset; return true; } friend class Label; void incRefCount(int id, Label *label) { clabelDefList_[id].refCount++; labelPtrList_.insert(label); } void decRefCount(int id, Label *label) { labelPtrList_.erase(label); ClabelDefList::iterator i = clabelDefList_.find(id); if (i == clabelDefList_.end()) return; if (i->second.refCount == 1) { clabelDefList_.erase(id); } else { --i->second.refCount; } } template bool hasUndefinedLabel_inner(const T& list) const { #ifndef NDEBUG for (typename T::const_iterator i = list.begin(); i != list.end(); ++i) { std::cerr << "undefined label:" << i->first << std::endl; } #endif return !list.empty(); } // detach all labels linked to LabelManager void resetLabelPtrList() { for (LabelPtrList::iterator i = labelPtrList_.begin(), ie = labelPtrList_.end(); i != ie; ++i) { (*i)->clear(); } labelPtrList_.clear(); } public: LabelManager() { reset(); } ~LabelManager() { resetLabelPtrList(); } void reset() { base_ = 0; labelId_ = 1; stateList_.clear(); stateList_.push_back(SlabelState()); stateList_.push_back(SlabelState()); clabelDefList_.clear(); clabelUndefList_.clear(); resetLabelPtrList(); } void enterLocal() { stateList_.push_back(SlabelState()); } void leaveLocal() { if (stateList_.size() <= 2) throw Error(ERR_UNDER_LOCAL_LABEL); if (hasUndefinedLabel_inner(stateList_.back().undefList)) throw Error(ERR_LABEL_IS_NOT_FOUND); stateList_.pop_back(); } void set(CodeArray *base) { base_ = base; } void defineSlabel(std::string label) { if (label == "@b" || label == "@f") throw Error(ERR_BAD_LABEL_STR); if (label == "@@") { SlabelDefList& defList = stateList_.front().defList; SlabelDefList::iterator i = defList.find("@f"); if (i != defList.end()) { defList.erase(i); label = "@b"; } else { i = defList.find("@b"); if (i != defList.end()) { defList.erase(i); } label = "@f"; } } SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); define_inner(st.defList, st.undefList, label, base_->getSize()); } void defineClabel(Label& label) { define_inner(clabelDefList_, clabelUndefList_, getId(label), base_->getSize()); label.mgr = this; labelPtrList_.insert(&label); } void assign(Label& dst, const Label& src) { ClabelDefList::const_iterator i = clabelDefList_.find(src.id); if (i == clabelDefList_.end()) throw Error(ERR_LABEL_ISNOT_SET_BY_L); define_inner(clabelDefList_, clabelUndefList_, dst.id, i->second.offset); dst.mgr = this; labelPtrList_.insert(&dst); } bool getOffset(size_t *offset, std::string& label) const { const SlabelDefList& defList = stateList_.front().defList; if (label == "@b") { if (defList.find("@f") != defList.end()) { label = "@f"; } else if (defList.find("@b") == defList.end()) { throw Error(ERR_LABEL_IS_NOT_FOUND); } } else if (label == "@f") { if (defList.find("@f") != defList.end()) { label = "@b"; } } const SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); return getOffset_inner(st.defList, offset, label); } bool getOffset(size_t *offset, const Label& label) const { return getOffset_inner(clabelDefList_, offset, getId(label)); } void addUndefinedLabel(const std::string& label, const JmpLabel& jmp) { SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); st.undefList.insert(SlabelUndefList::value_type(label, jmp)); } void addUndefinedLabel(const Label& label, const JmpLabel& jmp) { clabelUndefList_.insert(ClabelUndefList::value_type(label.id, jmp)); } bool hasUndefSlabel() const { for (StateList::const_iterator i = stateList_.begin(), ie = stateList_.end(); i != ie; ++i) { if (hasUndefinedLabel_inner(i->undefList)) return true; } return false; } bool hasUndefClabel() const { return hasUndefinedLabel_inner(clabelUndefList_); } const uint8 *getCode() const { return base_->getCode(); } bool isReady() const { return !base_->isAutoGrow() || base_->isCalledCalcJmpAddress(); } }; inline Label::Label(const Label& rhs) { id = rhs.id; mgr = rhs.mgr; if (mgr) mgr->incRefCount(id, this); } inline Label& Label::operator=(const Label& rhs) { if (id) throw Error(ERR_LABEL_IS_ALREADY_SET_BY_L); id = rhs.id; mgr = rhs.mgr; if (mgr) mgr->incRefCount(id, this); return *this; } inline Label::~Label() { if (id && mgr) mgr->decRefCount(id, this); } inline const uint8* Label::getAddress() const { if (mgr == 0 || !mgr->isReady()) return 0; size_t offset; if (!mgr->getOffset(&offset, *this)) return 0; return mgr->getCode() + offset; } class CodeGenerator : public CodeArray { public: enum LabelType { T_SHORT, T_NEAR, T_AUTO // T_SHORT if possible }; private: CodeGenerator operator=(const CodeGenerator&); // don't call #ifdef XBYAK64 enum { i32e = 32 | 64, BIT = 64 }; static const size_t dummyAddr = (size_t(0x11223344) << 32) | 55667788; typedef Reg64 NativeReg; #else enum { i32e = 32, BIT = 32 }; static const size_t dummyAddr = 0x12345678; typedef Reg32 NativeReg; #endif // (XMM, XMM|MEM) static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isXMM() || op2.isMEM()); } // (MMX, MMX|MEM) or (XMM, XMM|MEM) static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2) { return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2); } // (XMM, MMX|MEM) static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isMMX() || op2.isMEM()); } // (MMX, XMM|MEM) static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isMMX() && (op2.isXMM() || op2.isMEM()); } // (XMM, REG32|MEM) static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM()); } // (REG32, XMM|MEM) static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM()); } // (REG32, REG32|MEM) static inline bool isREG32_REG32orMEM(const Operand& op1, const Operand& op2) { return op1.isREG(i32e) && ((op2.isREG(i32e) && op1.getBit() == op2.getBit()) || op2.isMEM()); } void rex(const Operand& op1, const Operand& op2 = Operand()) { uint8 rex = 0; const Operand *p1 = &op1, *p2 = &op2; if (p1->isMEM()) std::swap(p1, p2); if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION); if (p2->isMEM()) { const Address& addr = p2->getAddress(); if (BIT == 64 && addr.is32bit()) db(0x67); rex = addr.getRex() | p1->getReg().getRex(); } else { // ModRM(reg, base); rex = op2.getReg().getRex(op1.getReg()); } // except movsx(16bit, 32/64bit) if ((op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e))) db(0x66); if (rex) db(rex); } enum AVXtype { // low 3 bit T_N1 = 1, T_N2 = 2, T_N4 = 3, T_N8 = 4, T_N16 = 5, T_N32 = 6, T_NX_MASK = 7, // T_N_VL = 1 << 3, // N * (1, 2, 4) for VL T_DUP = 1 << 4, // N = (8, 32, 64) T_66 = 1 << 5, T_F3 = 1 << 6, T_F2 = 1 << 7, T_0F = 1 << 8, T_0F38 = 1 << 9, T_0F3A = 1 << 10, T_L0 = 1 << 11, T_L1 = 1 << 12, T_W0 = 1 << 13, T_W1 = 1 << 14, T_EW0 = 1 << 15, T_EW1 = 1 << 16, T_YMM = 1 << 17, // support YMM, ZMM T_EVEX = 1 << 18, T_ER_X = 1 << 19, // xmm{er} T_ER_Y = 1 << 20, // ymm{er} T_ER_Z = 1 << 21, // zmm{er} T_SAE_X = 1 << 22, // xmm{sae} T_SAE_Y = 1 << 23, // ymm{sae} T_SAE_Z = 1 << 24, // zmm{sae} T_MUST_EVEX = 1 << 25, // contains T_EVEX T_B32 = 1 << 26, // m32bcst T_B64 = 1 << 27, // m64bcst T_M_K = 1 << 28, // mem{k} T_VSIB = 1 << 29, T_MEM_EVEX = 1 << 30, // use evex if mem T_XXX }; void vex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false) { int w = (type & T_W1) ? 1 : 0; bool is256 = (type & T_L1) ? true : (type & T_L0) ? false : reg.isYMM(); bool r = reg.isExtIdx(); bool b = base.isExtIdx(); int idx = v ? v->getIdx() : 0; if ((idx | reg.getIdx() | base.getIdx()) >= 16) throw Error(ERR_BAD_COMBINATION); uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0; uint32 vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp; if (!b && !x && !w && (type & T_0F)) { db(0xC5); db((r ? 0 : 0x80) | vvvv); } else { uint32 mmmm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0; db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv); } db(code); } void verifySAE(const Reg& r, int type) const { if (((type & T_SAE_X) && r.isXMM()) || ((type & T_SAE_Y) && r.isYMM()) || ((type & T_SAE_Z) && r.isZMM())) return; throw Error(ERR_SAE_IS_INVALID); } void verifyER(const Reg& r, int type) const { if (((type & T_ER_X) && r.isXMM()) || ((type & T_ER_Y) && r.isYMM()) || ((type & T_ER_Z) && r.isZMM())) return; throw Error(ERR_ER_IS_INVALID); } // (a, b, c) contains non zero two or three values then err int verifyDuplicate(int a, int b, int c, int err) { int v = a | b | c; if ((a > 0 && a != v) + (b > 0 && b != v) + (c > 0 && c != v) > 0) return Error(err); return v; } int evex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false, bool b = false, int aaa = 0, uint32 VL = 0, bool Hi16Vidx = false) { if (!(type & (T_EVEX | T_MUST_EVEX))) throw Error(ERR_EVEX_IS_INVALID); int w = (type & T_EW1) ? 1 : 0; uint32 mm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0; uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0; int idx = v ? v->getIdx() : 0; uint32 vvvv = ~idx; bool R = !reg.isExtIdx(); bool X = x ? false : !base.isExtIdx2(); bool B = !base.isExtIdx(); bool Rp = !reg.isExtIdx2(); int LL; int rounding = verifyDuplicate(reg.getRounding(), base.getRounding(), v ? v->getRounding() : 0, ERR_ROUNDING_IS_ALREADY_SET); int disp8N = 1; if (rounding) { if (rounding == EvexModifierRounding::T_SAE) { verifySAE(base, type); LL = 0; } else { verifyER(base, type); LL = rounding - 1; } b = true; } else { if (v) VL = (std::max)(VL, v->getBit()); VL = (std::max)((std::max)(reg.getBit(), base.getBit()), VL); LL = (VL == 512) ? 2 : (VL == 256) ? 1 : 0; if (b) { disp8N = (type & T_B32) ? 4 : 8; } else if (type & T_DUP) { disp8N = VL == 128 ? 8 : VL == 256 ? 32 : 64; } else { if ((type & (T_NX_MASK | T_N_VL)) == 0) { type |= T_N16 | T_N_VL; // default } int low = type & T_NX_MASK; if (low > 0) { disp8N = 1 << (low - 1); if (type & T_N_VL) disp8N *= (VL == 512 ? 4 : VL == 256 ? 2 : 1); } } } bool Vp = !((v ? v->isExtIdx2() : 0) | Hi16Vidx); bool z = reg.hasZero() || base.hasZero() || (v ? v->hasZero() : false); if (aaa == 0) aaa = verifyDuplicate(base.getOpmaskIdx(), reg.getOpmaskIdx(), (v ? v->getOpmaskIdx() : 0), ERR_OPMASK_IS_ALREADY_SET); db(0x62); db((R ? 0x80 : 0) | (X ? 0x40 : 0) | (B ? 0x20 : 0) | (Rp ? 0x10 : 0) | (mm & 3)); db((w == 1 ? 0x80 : 0) | ((vvvv & 15) << 3) | 4 | (pp & 3)); db((z ? 0x80 : 0) | ((LL & 3) << 5) | (b ? 0x10 : 0) | (Vp ? 8 : 0) | (aaa & 7)); db(code); return disp8N; } void setModRM(int mod, int r1, int r2) { db(static_cast((mod << 6) | ((r1 & 7) << 3) | (r2 & 7))); } void setSIB(const RegExp& e, int reg, int disp8N = 0) { size_t disp64 = e.getDisp(); #ifdef XBYAK64 size_t high = disp64 >> 32; if (high != 0 && high != 0xFFFFFFFF) throw Error(ERR_OFFSET_IS_TOO_BIG); #endif uint32 disp = static_cast(disp64); const Reg& base = e.getBase(); const Reg& index = e.getIndex(); const int baseIdx = base.getIdx(); const int baseBit = base.getBit(); const int indexBit = index.getBit(); enum { mod00 = 0, mod01 = 1, mod10 = 2 }; int mod = mod10; // disp32 if (!baseBit || ((baseIdx & 7) != Operand::EBP && disp == 0)) { mod = mod00; } else { if (disp8N == 0) { if (inner::IsInDisp8(disp)) { mod = mod01; } } else { // disp must be casted to signed uint32 t = static_cast(static_cast(disp) / disp8N); if ((disp % disp8N) == 0 && inner::IsInDisp8(t)) { disp = t; mod = mod01; } } } const int newBaseIdx = baseBit ? (baseIdx & 7) : Operand::EBP; /* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */ bool hasSIB = indexBit || (baseIdx & 7) == Operand::ESP; #ifdef XBYAK64 if (!baseBit && !indexBit) hasSIB = true; #endif if (hasSIB) { setModRM(mod, reg, Operand::ESP); /* SIB = [2:3:3] = [SS:index:base(=rm)] */ const int idx = indexBit ? (index.getIdx() & 7) : Operand::ESP; const int scale = e.getScale(); const int SS = (scale == 8) ? 3 : (scale == 4) ? 2 : (scale == 2) ? 1 : 0; setModRM(SS, idx, newBaseIdx); } else { setModRM(mod, reg, newBaseIdx); } if (mod == mod01) { db(disp); } else if (mod == mod10 || (mod == mod00 && !baseBit)) { dd(disp); } } LabelManager labelMgr_; bool isInDisp16(uint32 x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; } void opModR(const Reg& reg1, const Reg& reg2, int code0, int code1 = NONE, int code2 = NONE) { rex(reg2, reg1); db(code0 | (reg1.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); setModRM(3, reg1.getIdx(), reg2.getIdx()); } void opModM(const Address& addr, const Reg& reg, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0) { if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); rex(addr, reg); db(code0 | (reg.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); opAddr(addr, reg.getIdx(), immSize); } void opMIB(const Address& addr, const Reg& reg, int code0, int code1) { if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); if (addr.getMode() != Address::M_ModRM) throw Error(ERR_INVALID_MIB_ADDRESS); if (BIT == 64 && addr.is32bit()) db(0x67); const RegExp& regExp = addr.getRegExp(false); uint8 rex = regExp.getRex(); if (rex) db(rex); db(code0); db(code1); setSIB(regExp, reg.getIdx()); } void makeJmp(uint32 disp, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref) { const int shortJmpSize = 2; const int longHeaderSize = longPref ? 2 : 1; const int longJmpSize = longHeaderSize + 4; if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) { db(shortCode); db(disp - shortJmpSize); } else { if (type == T_SHORT) throw Error(ERR_LABEL_IS_TOO_FAR); if (longPref) db(longPref); db(longCode); dd(disp - longJmpSize); } } template void opJmp(T& label, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref) { if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */ size_t offset = 0; if (labelMgr_.getOffset(&offset, label)) { /* label exists */ makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref); } else { int jmpSize = 0; if (type == T_NEAR) { jmpSize = 4; if (longPref) db(longPref); db(longCode); dd(0); } else { jmpSize = 1; db(shortCode); db(0); } JmpLabel jmp(size_, jmpSize, inner::LasIs); labelMgr_.addUndefinedLabel(label, jmp); } } void opJmpAbs(const void *addr, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref = 0) { if (isAutoGrow()) { if (type != T_NEAR) throw Error(ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW); if (size_ + 16 >= maxSize_) growMemory(); if (longPref) db(longPref); db(longCode); dd(0); save(size_ - 4, size_t(addr) - size_, 4, inner::Labs); } else { makeJmp(inner::VerifyInInt32(reinterpret_cast(addr) - getCurr()), type, shortCode, longCode, longPref); } } // reg is reg field of ModRM // immSize is the size for immediate value // disp8N = 0(normal), disp8N = 1(force disp32), disp8N = {2, 4, 8} ; compressed displacement void opAddr(const Address &addr, int reg, int immSize = 0, int disp8N = 0, bool permitVisb = false) { if (!permitVisb && addr.isVsib()) throw Error(ERR_BAD_VSIB_ADDRESSING); if (addr.getMode() == Address::M_ModRM) { setSIB(addr.getRegExp(), reg, disp8N); } else if (addr.getMode() == Address::M_rip || addr.getMode() == Address::M_ripAddr) { setModRM(0, reg, 5); if (addr.getLabel()) { // [rip + Label] putL_inner(*addr.getLabel(), true, addr.getDisp() - immSize); } else { size_t disp = addr.getDisp(); if (addr.getMode() == Address::M_ripAddr) { if (isAutoGrow()) throw Error(ERR_INVALID_RIP_IN_AUTO_GROW); disp -= (size_t)getCurr() + 4 + immSize; } dd(inner::VerifyInInt32(disp)); } } } /* preCode is for SSSE3/SSE4 */ void opGen(const Operand& reg, const Operand& op, int code, int pref, bool isValid(const Operand&, const Operand&), int imm8 = NONE, int preCode = NONE) { if (isValid && !isValid(reg, op)) throw Error(ERR_BAD_COMBINATION); if (pref != NONE) db(pref); if (op.isMEM()) { opModM(op.getAddress(), reg.getReg(), 0x0F, preCode, code, (imm8 != NONE) ? 1 : 0); } else { opModR(reg.getReg(), op.getReg(), 0x0F, preCode, code); } if (imm8 != NONE) db(imm8); } void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext) { if (mmx.isXMM()) db(0x66); opModR(Reg32(ext), mmx, 0x0F, code); db(imm8); } void opMMX(const Mmx& mmx, const Operand& op, int code, int pref = 0x66, int imm8 = NONE, int preCode = NONE) { opGen(mmx, op, code, mmx.isXMM() ? pref : NONE, isXMMorMMX_MEM, imm8, preCode); } void opMovXMM(const Operand& op1, const Operand& op2, int code, int pref) { if (pref != NONE) db(pref); if (op1.isXMM() && op2.isMEM()) { opModM(op2.getAddress(), op1.getReg(), 0x0F, code); } else if (op1.isMEM() && op2.isXMM()) { opModM(op1.getAddress(), op2.getReg(), 0x0F, code | 1); } else { throw Error(ERR_BAD_COMBINATION); } } void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false) { if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */ if (mmx.isXMM()) db(0x66); opModR(op.getReg(), mmx, 0x0F, 0xC5); db(imm); } else { opGen(mmx, op, code, 0x66, isXMM_REG32orMEM, imm, 0x3A); } } void opR_ModM(const Operand& op, int bit, int ext, int code0, int code1 = NONE, int code2 = NONE, bool disableRex = false, int immSize = 0) { int opBit = op.getBit(); if (disableRex && opBit == 64) opBit = 32; if (op.isREG(bit)) { opModR(Reg(ext, Operand::REG, opBit), op.getReg().changeBit(opBit), code0, code1, code2); } else if (op.isMEM()) { opModM(op.getAddress(), Reg(ext, Operand::REG, opBit), code0, code1, code2, immSize); } else { throw Error(ERR_BAD_COMBINATION); } } void opShift(const Operand& op, int imm, int ext) { verifyMemHasSize(op); opR_ModM(op, 0, ext, (0xC0 | ((imm == 1 ? 1 : 0) << 4)), NONE, NONE, false, (imm != 1) ? 1 : 0); if (imm != 1) db(imm); } void opShift(const Operand& op, const Reg8& _cl, int ext) { if (_cl.getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION); opR_ModM(op, 0, ext, 0xD2); } void opModRM(const Operand& op1, const Operand& op2, bool condR, bool condM, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0) { if (condR) { opModR(op1.getReg(), op2.getReg(), code0, code1, code2); } else if (condM) { opModM(op2.getAddress(), op1.getReg(), code0, code1, code2, immSize); } else { throw Error(ERR_BAD_COMBINATION); } } void opShxd(const Operand& op, const Reg& reg, uint8 imm, int code, const Reg8 *_cl = 0) { if (_cl && _cl->getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION); opModRM(reg, op, (op.isREG(16 | i32e) && op.getBit() == reg.getBit()), op.isMEM() && (reg.isREG(16 | i32e)), 0x0F, code | (_cl ? 1 : 0), NONE, _cl ? 0 : 1); if (!_cl) db(imm); } // (REG, REG|MEM), (MEM, REG) void opRM_RM(const Operand& op1, const Operand& op2, int code) { if (op1.isREG() && op2.isMEM()) { opModM(op2.getAddress(), op1.getReg(), code | 2); } else { opModRM(op2, op1, op1.isREG() && op1.getKind() == op2.getKind(), op1.isMEM() && op2.isREG(), code); } } // (REG|MEM, IMM) void opRM_I(const Operand& op, uint32 imm, int code, int ext) { verifyMemHasSize(op); uint32 immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32; if (op.isBit(8)) immBit = 8; if (op.getBit() < immBit) throw Error(ERR_IMM_IS_TOO_BIG); if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */ if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al rex(op); db(code | 4 | (immBit == 8 ? 0 : 1)); } else { int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0; opR_ModM(op, 0, ext, 0x80 | tmp, NONE, NONE, false, immBit / 8); } db(imm, immBit / 8); } void opIncDec(const Operand& op, int code, int ext) { verifyMemHasSize(op); #ifndef XBYAK64 if (op.isREG() && !op.isBit(8)) { rex(op); db(code | op.getIdx()); return; } #endif code = 0xFE; if (op.isREG()) { opModR(Reg(ext, Operand::REG, op.getBit()), op.getReg(), code); } else { opModM(op.getAddress(), Reg(ext, Operand::REG, op.getBit()), code); } } void opPushPop(const Operand& op, int code, int ext, int alt) { int bit = op.getBit(); if (bit == 16 || bit == BIT) { if (bit == 16) db(0x66); if (op.isREG()) { if (op.getReg().getIdx() >= 8) db(0x41); db(alt | (op.getIdx() & 7)); return; } if (op.isMEM()) { opModM(op.getAddress(), Reg(ext, Operand::REG, 32), code); return; } } throw Error(ERR_BAD_COMBINATION); } void verifyMemHasSize(const Operand& op) const { if (op.isMEM() && op.getBit() == 0) throw Error(ERR_MEM_SIZE_IS_NOT_SPECIFIED); } /* mov(r, imm) = db(imm, mov_imm(r, imm)) */ int mov_imm(const Reg& reg, size_t imm) { int bit = reg.getBit(); const int idx = reg.getIdx(); int code = 0xB0 | ((bit == 8 ? 0 : 1) << 3); if (bit == 64 && (imm & ~size_t(0xffffffffu)) == 0) { rex(Reg32(idx)); bit = 32; } else { rex(reg); if (bit == 64 && inner::IsInInt32(imm)) { db(0xC7); code = 0xC0; bit = 32; } } db(code | (idx & 7)); return bit / 8; } template void putL_inner(T& label, bool relative = false, size_t disp = 0) { const int jmpSize = relative ? 4 : (int)sizeof(size_t); if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); size_t offset = 0; if (labelMgr_.getOffset(&offset, label)) { if (relative) { db(inner::VerifyInInt32(offset + disp - size_ - jmpSize), jmpSize); } else if (isAutoGrow()) { db(uint64(0), jmpSize); save(size_ - jmpSize, offset, jmpSize, inner::LaddTop); } else { db(size_t(top_) + offset, jmpSize); } return; } db(uint64(0), jmpSize); JmpLabel jmp(size_, jmpSize, (relative ? inner::LasIs : isAutoGrow() ? inner::LaddTop : inner::Labs), disp); labelMgr_.addUndefinedLabel(label, jmp); } void opMovxx(const Reg& reg, const Operand& op, uint8 code) { if (op.isBit(32)) throw Error(ERR_BAD_COMBINATION); int w = op.isBit(16); #ifdef XBYAK64 if (op.isHigh8bit()) throw Error(ERR_BAD_COMBINATION); #endif bool cond = reg.isREG() && (reg.getBit() > op.getBit()); opModRM(reg, op, cond && op.isREG(), cond && op.isMEM(), 0x0F, code | w); } void opFpuMem(const Address& addr, uint8 m16, uint8 m32, uint8 m64, uint8 ext, uint8 m64ext) { if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); uint8 code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0; if (!code) throw Error(ERR_BAD_MEM_SIZE); if (m64ext && addr.isBit(64)) ext = m64ext; rex(addr, st0); db(code); opAddr(addr, ext); } // use code1 if reg1 == st0 // use code2 if reg1 != st0 && reg2 == st0 void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32 code1, uint32 code2) { uint32 code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0; if (!code) throw Error(ERR_BAD_ST_COMBINATION); db(uint8(code >> 8)); db(uint8(code | (reg1.getIdx() | reg2.getIdx()))); } void opFpu(const Fpu& reg, uint8 code1, uint8 code2) { db(code1); db(code2 | reg.getIdx()); } void opVex(const Reg& r, const Operand *p1, const Operand& op2, int type, int code, int imm8 = NONE) { if (op2.isMEM()) { const Address& addr = op2.getAddress(); const RegExp& regExp = addr.getRegExp(); const Reg& base = regExp.getBase(); const Reg& index = regExp.getIndex(); if (BIT == 64 && addr.is32bit()) db(0x67); int disp8N = 0; bool x = index.isExtIdx(); if ((type & (T_MUST_EVEX|T_MEM_EVEX)) || r.hasEvex() || (p1 && p1->hasEvex()) || addr.isBroadcast() || addr.getOpmaskIdx()) { int aaa = addr.getOpmaskIdx(); if (aaa && !(type & T_M_K)) throw Error(ERR_INVALID_OPMASK_WITH_MEMORY); bool b = false; if (addr.isBroadcast()) { if (!(type & (T_B32 | T_B64))) throw Error(ERR_INVALID_BROADCAST); b = true; } int VL = regExp.isVsib() ? index.getBit() : 0; disp8N = evex(r, base, p1, type, code, x, b, aaa, VL, index.isExtIdx2()); } else { vex(r, base, p1, type, code, x); } opAddr(addr, r.getIdx(), (imm8 != NONE) ? 1 : 0, disp8N, (type & T_VSIB) != 0); } else { const Reg& base = op2.getReg(); if ((type & T_MUST_EVEX) || r.hasEvex() || (p1 && p1->hasEvex()) || base.hasEvex()) { evex(r, base, p1, type, code); } else { vex(r, base, p1, type, code); } setModRM(3, r.getIdx(), base.getIdx()); } if (imm8 != NONE) db(imm8); } // (r, r, r/m) if isR_R_RM // (r, r/m, r) void opGpr(const Reg32e& r, const Operand& op1, const Operand& op2, int type, uint8 code, bool isR_R_RM, int imm8 = NONE) { const Operand *p1 = &op1; const Operand *p2 = &op2; if (!isR_R_RM) std::swap(p1, p2); const unsigned int bit = r.getBit(); if (p1->getBit() != bit || (p2->isREG() && p2->getBit() != bit)) throw Error(ERR_BAD_COMBINATION); type |= (bit == 64) ? T_W1 : T_W0; opVex(r, p1, *p2, type, code, imm8); } void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, int type, int code0, int imm8 = NONE) { const Xmm *x2 = static_cast(&op1); const Operand *op = &op2; if (op2.isNone()) { // (x1, op1) -> (x1, x1, op1) x2 = &x1; op = &op1; } // (x1, x2, op) if (!((x1.isXMM() && x2->isXMM()) || ((type & T_YMM) && ((x1.isYMM() && x2->isYMM()) || (x1.isZMM() && x2->isZMM()))))) throw Error(ERR_BAD_COMBINATION); opVex(x1, x2, *op, type, code0, imm8); } void opAVX_K_X_XM(const Opmask& k, const Xmm& x2, const Operand& op3, int type, int code0, int imm8 = NONE) { if (!op3.isMEM() && (x2.getKind() != op3.getKind())) throw Error(ERR_BAD_COMBINATION); opVex(k, &x2, op3, type, code0, imm8); } // (x, x/m), (y, x/m256), (z, y/m) void checkCvt1(const Operand& x, const Operand& op) const { if (!op.isMEM() && !(x.is(Operand::XMM | Operand::YMM) && op.isXMM()) && !(x.isZMM() && op.isYMM())) throw Error(ERR_BAD_COMBINATION); } // (x, x/m), (x, y/m256), (y, z/m) void checkCvt2(const Xmm& x, const Operand& op) const { if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) throw Error(ERR_BAD_COMBINATION); } void opCvt2(const Xmm& x, const Operand& op, int type, int code) { checkCvt2(x, op); Operand::Kind kind = x.isXMM() ? (op.isBit(256) ? Operand::YMM : Operand::XMM) : Operand::ZMM; opVex(x.copyAndSetKind(kind), &xm0, op, type, code); } void opCvt3(const Xmm& x1, const Xmm& x2, const Operand& op, int type, int type64, int type32, uint8 code) { if (!(x1.isXMM() && x2.isXMM() && (op.isREG(i32e) || op.isMEM()))) throw Error(ERR_BAD_SIZE_OF_REGISTER); Xmm x(op.getIdx()); const Operand *p = op.isREG() ? &x : &op; opVex(x1, &x2, *p, type | (op.isBit(64) ? type64 : type32), code); } const Xmm& cvtIdx0(const Operand& x) const { return x.isZMM() ? zm0 : x.isYMM() ? ym0 : xm0; } // support (x, x/m, imm), (y, y/m, imm) void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, int type, int code, int imm8 = NONE) { opAVX_X_X_XM(x, cvtIdx0(x), op, type, code, imm8); } // QQQ:need to refactor void opSp1(const Reg& reg, const Operand& op, uint8 pref, uint8 code0, uint8 code1) { if (reg.isBit(8)) throw Error(ERR_BAD_SIZE_OF_REGISTER); bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM()); if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) throw Error(ERR_BAD_COMBINATION); if (is16bit) db(0x66); db(pref); opModRM(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, op.isREG(), true, code0, code1); } void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, int type, uint8 code, int mode) { const RegExp& regExp = addr.getRegExp(); if (!regExp.isVsib(128 | 256)) throw Error(ERR_BAD_VSIB_ADDRESSING); const int y_vx_y = 0; const int y_vy_y = 1; // const int x_vy_x = 2; const bool isAddrYMM = regExp.getIndex().getBit() == 256; if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) { bool isOK = false; if (mode == y_vx_y) { isOK = x1.isYMM() && !isAddrYMM && x2.isYMM(); } else if (mode == y_vy_y) { isOK = x1.isYMM() && isAddrYMM && x2.isYMM(); } else { // x_vy_x isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM(); } if (!isOK) throw Error(ERR_BAD_VSIB_ADDRESSING); } opAVX_X_X_XM(isAddrYMM ? Ymm(x1.getIdx()) : x1, isAddrYMM ? Ymm(x2.getIdx()) : x2, addr, type, code); } enum { xx_yy_zz = 0, xx_yx_zy = 1, xx_xy_yz = 2 }; void checkGather2(const Xmm& x1, const Reg& x2, int mode) const { if (x1.isXMM() && x2.isXMM()) return; switch (mode) { case xx_yy_zz: if ((x1.isYMM() && x2.isYMM()) || (x1.isZMM() && x2.isZMM())) return; break; case xx_yx_zy: if ((x1.isYMM() && x2.isXMM()) || (x1.isZMM() && x2.isYMM())) return; break; case xx_xy_yz: if ((x1.isXMM() && x2.isYMM()) || (x1.isYMM() && x2.isZMM())) return; break; } throw Error(ERR_BAD_VSIB_ADDRESSING); } void opGather2(const Xmm& x, const Address& addr, int type, uint8 code, int mode) { if (x.hasZero()) throw Error(ERR_INVALID_ZERO); checkGather2(x, addr.getRegExp().getIndex(), mode); opVex(x, 0, addr, type, code); } /* xx_xy_yz ; mode = true xx_xy_xz ; mode = false */ void opVmov(const Operand& op, const Xmm& x, int type, uint8 code, bool mode) { if (mode) { if (!op.isMEM() && !((op.isXMM() && x.isXMM()) || (op.isXMM() && x.isYMM()) || (op.isYMM() && x.isZMM()))) throw Error(ERR_BAD_COMBINATION); } else { if (!op.isMEM() && !op.isXMM()) throw Error(ERR_BAD_COMBINATION); } opVex(x, 0, op, type, code); } void opGatherFetch(const Address& addr, const Xmm& x, int type, uint8 code, Operand::Kind kind) { if (addr.hasZero()) throw Error(ERR_INVALID_ZERO); if (addr.getRegExp().getIndex().getKind() != kind) throw Error(ERR_BAD_VSIB_ADDRESSING); opVex(x, 0, addr, type, code); } public: unsigned int getVersion() const { return VERSION; } using CodeArray::db; const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7; const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7; const Zmm zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7; const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7; const Ymm &ym0, &ym1, &ym2, &ym3, &ym4, &ym5, &ym6, &ym7; const Ymm &zm0, &zm1, &zm2, &zm3, &zm4, &zm5, &zm6, &zm7; const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi; const Reg16 ax, cx, dx, bx, sp, bp, si, di; const Reg8 al, cl, dl, bl, ah, ch, dh, bh; const AddressFrame ptr, byte, word, dword, qword, xword, yword, zword; // xword is same as oword of NASM const AddressFrame ptr_b, xword_b, yword_b, zword_b; // broadcast such as {1to2}, {1to4}, {1to8}, {1to16}, {b} const Fpu st0, st1, st2, st3, st4, st5, st6, st7; const Opmask k0, k1, k2, k3, k4, k5, k6, k7; const BoundsReg bnd0, bnd1, bnd2, bnd3; const EvexModifierRounding T_sae, T_rn_sae, T_rd_sae, T_ru_sae, T_rz_sae; // {sae}, {rn-sae}, {rd-sae}, {ru-sae}, {rz-sae} const EvexModifierZero T_z; // {z} #ifdef XBYAK64 const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15; const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d; const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w; const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b; const Reg8 spl, bpl, sil, dil; const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; const Xmm xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23; const Xmm xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31; const Ymm ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15; const Ymm ymm16, ymm17, ymm18, ymm19, ymm20, ymm21, ymm22, ymm23; const Ymm ymm24, ymm25, ymm26, ymm27, ymm28, ymm29, ymm30, ymm31; const Zmm zmm8, zmm9, zmm10, zmm11, zmm12, zmm13, zmm14, zmm15; const Zmm zmm16, zmm17, zmm18, zmm19, zmm20, zmm21, zmm22, zmm23; const Zmm zmm24, zmm25, zmm26, zmm27, zmm28, zmm29, zmm30, zmm31; const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; // for my convenience const Xmm &xm16, &xm17, &xm18, &xm19, &xm20, &xm21, &xm22, &xm23; const Xmm &xm24, &xm25, &xm26, &xm27, &xm28, &xm29, &xm30, &xm31; const Ymm &ym8, &ym9, &ym10, &ym11, &ym12, &ym13, &ym14, &ym15; const Ymm &ym16, &ym17, &ym18, &ym19, &ym20, &ym21, &ym22, &ym23; const Ymm &ym24, &ym25, &ym26, &ym27, &ym28, &ym29, &ym30, &ym31; const Zmm &zm8, &zm9, &zm10, &zm11, &zm12, &zm13, &zm14, &zm15; const Zmm &zm16, &zm17, &zm18, &zm19, &zm20, &zm21, &zm22, &zm23; const Zmm &zm24, &zm25, &zm26, &zm27, &zm28, &zm29, &zm30, &zm31; const RegRip rip; #endif #ifndef XBYAK_DISABLE_SEGMENT const Segment es, cs, ss, ds, fs, gs; #endif void L(const std::string& label) { labelMgr_.defineSlabel(label); } void L(Label& label) { labelMgr_.defineClabel(label); } Label L() { Label label; L(label); return label; } void inLocalLabel() { labelMgr_.enterLocal(); } void outLocalLabel() { labelMgr_.leaveLocal(); } /* assign src to dst require dst : does not used by L() src : used by L() */ void assignL(Label& dst, const Label& src) { labelMgr_.assign(dst, src); } /* put address of label to buffer @note the put size is 4(32-bit), 8(64-bit) */ void putL(std::string label) { putL_inner(label); } void putL(const Label& label) { putL_inner(label); } void jmp(const Operand& op) { opR_ModM(op, BIT, 4, 0xFF, NONE, NONE, true); } void jmp(std::string label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); } void jmp(const char *label, LabelType type = T_AUTO) { jmp(std::string(label), type); } void jmp(const Label& label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); } void jmp(const void *addr, LabelType type = T_AUTO) { opJmpAbs(addr, type, 0xEB, 0xE9); } void call(const Operand& op) { opR_ModM(op, 16 | i32e, 2, 0xFF, NONE, NONE, true); } // call(string label), not const std::string& void call(std::string label) { opJmp(label, T_NEAR, 0, 0xE8, 0); } void call(const char *label) { call(std::string(label)); } void call(const Label& label) { opJmp(label, T_NEAR, 0, 0xE8, 0); } // call(function pointer) #ifdef XBYAK_VARIADIC_TEMPLATE template void call(Ret(*func)(Params...)) { call(reinterpret_cast(func)); } #endif void call(const void *addr) { opJmpAbs(addr, T_NEAR, 0, 0xE8); } void test(const Operand& op, const Reg& reg) { opModRM(reg, op, op.isREG() && (op.getKind() == reg.getKind()), op.isMEM(), 0x84); } void test(const Operand& op, uint32 imm) { verifyMemHasSize(op); int immSize = (std::min)(op.getBit() / 8, 4U); if (op.isREG() && op.getIdx() == 0) { // al, ax, eax rex(op); db(0xA8 | (op.isBit(8) ? 0 : 1)); } else { opR_ModM(op, 0, 0, 0xF6, NONE, NONE, false, immSize); } db(imm, immSize); } void imul(const Reg& reg, const Operand& op) { opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x0F, 0xAF); } void imul(const Reg& reg, const Operand& op, int imm) { int s = inner::IsInDisp8(imm) ? 1 : 0; int immSize = s ? 1 : reg.isREG(16) ? 2 : 4; opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x69 | (s << 1), NONE, NONE, immSize); db(imm, immSize); } void push(const Operand& op) { opPushPop(op, 0xFF, 6, 0x50); } void pop(const Operand& op) { opPushPop(op, 0x8F, 0, 0x58); } void push(const AddressFrame& af, uint32 imm) { if (af.bit_ == 8 && inner::IsInDisp8(imm)) { db(0x6A); db(imm); } else if (af.bit_ == 16 && isInDisp16(imm)) { db(0x66); db(0x68); dw(imm); } else { db(0x68); dd(imm); } } /* use "push(word, 4)" if you want "push word 4" */ void push(uint32 imm) { if (inner::IsInDisp8(imm)) { push(byte, imm); } else { push(dword, imm); } } void mov(const Operand& reg1, const Operand& reg2) { const Reg *reg = 0; const Address *addr = 0; uint8 code = 0; if (reg1.isREG() && reg1.getIdx() == 0 && reg2.isMEM()) { // mov eax|ax|al, [disp] reg = ®1.getReg(); addr= ®2.getAddress(); code = 0xA0; } else if (reg1.isMEM() && reg2.isREG() && reg2.getIdx() == 0) { // mov [disp], eax|ax|al reg = ®2.getReg(); addr= ®1.getAddress(); code = 0xA2; } #ifdef XBYAK64 if (addr && addr->is64bitDisp()) { if (code) { rex(*reg); db(reg1.isREG(8) ? 0xA0 : reg1.isREG() ? 0xA1 : reg2.isREG(8) ? 0xA2 : 0xA3); db(addr->getDisp(), 8); } else { throw Error(ERR_BAD_COMBINATION); } } else #else if (code && addr->isOnlyDisp()) { rex(*reg, *addr); db(code | (reg->isBit(8) ? 0 : 1)); dd(static_cast(addr->getDisp())); } else #endif { opRM_RM(reg1, reg2, 0x88); } } void mov(const Operand& op, size_t imm) { if (op.isREG()) { const int size = mov_imm(op.getReg(), imm); db(imm, size); } else if (op.isMEM()) { verifyMemHasSize(op); int immSize = op.getBit() / 8; if (immSize <= 4) { sint64 s = sint64(imm) >> (immSize * 8); if (s != 0 && s != -1) throw Error(ERR_IMM_IS_TOO_BIG); } else { if (!inner::IsInInt32(imm)) throw Error(ERR_IMM_IS_TOO_BIG); immSize = 4; } opModM(op.getAddress(), Reg(0, Operand::REG, op.getBit()), 0xC6, NONE, NONE, immSize); db(static_cast(imm), immSize); } else { throw Error(ERR_BAD_COMBINATION); } } void mov(const NativeReg& reg, const char *label) // can't use std::string { if (label == 0) { mov(static_cast(reg), 0); // call imm return; } mov_imm(reg, dummyAddr); putL(label); } void mov(const NativeReg& reg, const Label& label) { mov_imm(reg, dummyAddr); putL(label); } void xchg(const Operand& op1, const Operand& op2) { const Operand *p1 = &op1, *p2 = &op2; if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) { p1 = &op2; p2 = &op1; } if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION); if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0) #ifdef XBYAK64 && (p2->getIdx() != 0 || !p1->isREG(32)) #endif ) { rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7)); return; } opModRM(*p1, *p2, (p1->isREG() && p2->isREG() && (p1->getBit() == p2->getBit())), p2->isMEM(), 0x86 | (p1->isBit(8) ? 0 : 1)); } #ifndef XBYAK_DISABLE_SEGMENT void push(const Segment& seg) { switch (seg.getIdx()) { case Segment::es: db(0x06); break; case Segment::cs: db(0x0E); break; case Segment::ss: db(0x16); break; case Segment::ds: db(0x1E); break; case Segment::fs: db(0x0F); db(0xA0); break; case Segment::gs: db(0x0F); db(0xA8); break; default: assert(0); } } void pop(const Segment& seg) { switch (seg.getIdx()) { case Segment::es: db(0x07); break; case Segment::cs: throw Error(ERR_BAD_COMBINATION); case Segment::ss: db(0x17); break; case Segment::ds: db(0x1F); break; case Segment::fs: db(0x0F); db(0xA1); break; case Segment::gs: db(0x0F); db(0xA9); break; default: assert(0); } } void putSeg(const Segment& seg) { switch (seg.getIdx()) { case Segment::es: db(0x2E); break; case Segment::cs: db(0x36); break; case Segment::ss: db(0x3E); break; case Segment::ds: db(0x26); break; case Segment::fs: db(0x64); break; case Segment::gs: db(0x65); break; default: assert(0); } } void mov(const Operand& op, const Segment& seg) { opModRM(Reg8(seg.getIdx()), op, op.isREG(16|i32e), op.isMEM(), 0x8C); } void mov(const Segment& seg, const Operand& op) { opModRM(Reg8(seg.getIdx()), op.isREG(16|i32e) ? static_cast(op.getReg().cvt32()) : op, op.isREG(16|i32e), op.isMEM(), 0x8E); } #endif enum { NONE = 256 }; // constructor CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0, Allocator *allocator = 0) : CodeArray(maxSize, userPtr, allocator) , mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7) , xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7) , ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7) , zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7) // for my convenience , xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7) , ym0(ymm0), ym1(ymm1), ym2(ymm2), ym3(ymm3), ym4(ymm4), ym5(ymm5), ym6(ymm6), ym7(ymm7) , zm0(zmm0), zm1(zmm1), zm2(zmm2), zm3(zmm3), zm4(zmm4), zm5(zmm5), zm6(zmm6), zm7(zmm7) , eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI) , ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI) , al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH) , ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512) , ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true) , st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7) , k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7) , bnd0(0), bnd1(1), bnd2(2), bnd3(3) , T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE) , T_z() #ifdef XBYAK64 , rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15) , r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15) , r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15) , r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15) , spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true) , xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15) , xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23) , xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31) , ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15) , ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23) , ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31) , zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15) , zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23) , zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31) // for my convenience , xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15) , xm16(xmm16), xm17(xmm17), xm18(xmm18), xm19(xmm19), xm20(xmm20), xm21(xmm21), xm22(xmm22), xm23(xmm23) , xm24(xmm24), xm25(xmm25), xm26(xmm26), xm27(xmm27), xm28(xmm28), xm29(xmm29), xm30(xmm30), xm31(xmm31) , ym8(ymm8), ym9(ymm9), ym10(ymm10), ym11(ymm11), ym12(ymm12), ym13(ymm13), ym14(ymm14), ym15(ymm15) , ym16(ymm16), ym17(ymm17), ym18(ymm18), ym19(ymm19), ym20(ymm20), ym21(ymm21), ym22(ymm22), ym23(ymm23) , ym24(ymm24), ym25(ymm25), ym26(ymm26), ym27(ymm27), ym28(ymm28), ym29(ymm29), ym30(ymm30), ym31(ymm31) , zm8(zmm8), zm9(zmm9), zm10(zmm10), zm11(zmm11), zm12(zmm12), zm13(zmm13), zm14(zmm14), zm15(zmm15) , zm16(zmm16), zm17(zmm17), zm18(zmm18), zm19(zmm19), zm20(zmm20), zm21(zmm21), zm22(zmm22), zm23(zmm23) , zm24(zmm24), zm25(zmm25), zm26(zmm26), zm27(zmm27), zm28(zmm28), zm29(zmm29), zm30(zmm30), zm31(zmm31) , rip() #endif #ifndef XBYAK_DISABLE_SEGMENT , es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs) #endif { labelMgr_.set(this); } void reset() { resetSize(); labelMgr_.reset(); labelMgr_.set(this); } bool hasUndefinedLabel() const { return labelMgr_.hasUndefSlabel() || labelMgr_.hasUndefClabel(); } /* MUST call ready() to complete generating code if you use AutoGrow mode. It is not necessary for the other mode if hasUndefinedLabel() is true. */ void ready(ProtectMode mode = PROTECT_RWE) { if (hasUndefinedLabel()) throw Error(ERR_LABEL_IS_NOT_FOUND); if (isAutoGrow()) { calcJmpAddress(); if (useProtect()) setProtectMode(mode); } } // set read/exec void readyRE() { return ready(PROTECT_RE); } #ifdef XBYAK_TEST void dump(bool doClear = true) { CodeArray::dump(); if (doClear) size_ = 0; } #endif #ifdef XBYAK_UNDEF_JNL #undef jnl #endif /* use single byte nop if useMultiByteNop = false */ void nop(size_t size = 1, bool useMultiByteNop = true) { if (!useMultiByteNop) { for (size_t i = 0; i < size; i++) { db(0x90); } return; } /* Intel Architectures Software Developer's Manual Volume 2 recommended multi-byte sequence of NOP instruction AMD and Intel seem to agree on the same sequences for up to 9 bytes: https://support.amd.com/TechDocs/55723_SOG_Fam_17h_Processors_3.00.pdf */ static const uint8 nopTbl[9][9] = { {0x90}, {0x66, 0x90}, {0x0F, 0x1F, 0x00}, {0x0F, 0x1F, 0x40, 0x00}, {0x0F, 0x1F, 0x44, 0x00, 0x00}, {0x66, 0x0F, 0x1F, 0x44, 0x00, 0x00}, {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, }; const size_t n = sizeof(nopTbl) / sizeof(nopTbl[0]); while (size > 0) { size_t len = (std::min)(n, size); const uint8 *seq = nopTbl[len - 1]; db(seq, len); size -= len; } } #ifndef XBYAK_DONT_READ_LIST #include "xbyak_mnemonic.h" /* use single byte nop if useMultiByteNop = false */ void align(size_t x = 16, bool useMultiByteNop = true) { if (x == 1) return; if (x < 1 || (x & (x - 1))) throw Error(ERR_BAD_ALIGN); if (isAutoGrow() && x > inner::ALIGN_PAGE_SIZE) fprintf(stderr, "warning:autoGrow mode does not support %d align\n", (int)x); size_t remain = size_t(getCurr()) % x; if (remain) { nop(x - remain, useMultiByteNop); } } #endif }; namespace util { static const Mmx mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7); static const Xmm xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7); static const Ymm ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7); static const Zmm zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7); static const Reg32 eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI); static const Reg16 ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI); static const Reg8 al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH); static const AddressFrame ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512); static const AddressFrame ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true); static const Fpu st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7); static const Opmask k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7); static const BoundsReg bnd0(0), bnd1(1), bnd2(2), bnd3(3); static const EvexModifierRounding T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE); static const EvexModifierZero T_z; #ifdef XBYAK64 static const Reg64 rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15); static const Reg32 r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15); static const Reg16 r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15); static const Reg8 r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15), spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true); static const Xmm xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15); static const Xmm xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23); static const Xmm xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31); static const Ymm ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15); static const Ymm ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23); static const Ymm ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31); static const Zmm zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15); static const Zmm zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23); static const Zmm zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31); static const RegRip rip; #endif #ifndef XBYAK_DISABLE_SEGMENT static const Segment es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs); #endif } // util #ifdef _MSC_VER #pragma warning(pop) #endif } // end of namespace #endif // XBYAK_XBYAK_H_