/******************************************************************************* * Copyright 2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #ifndef RNN_UTILS_HPP #define RNN_UTILS_HPP #include "mkldnn.h" #include "cpu_rnn_pd.hpp" #define rnn_elemwise_sig(f) \ void f(const rnn_utils::rnn_conf_t &rnn, acc_data_t *ws_gates_, \ src_data_t *states_t_l_, float *c_states_t_l_, \ src_data_t *states_tm1_l_, float *c_states_tm1_l_, \ float *diff_states_t_l_, float *diff_states_t_lp1_, \ float *diff_states_tp1_l_, float *bias_, float *ws_grid_, \ float *ws_cell_) const #define rnn_cell_execution_sig(f) \ void f(const rnn_utils::rnn_conf_t &rnn, src_data_t *states_t_l_, \ float *c_states_t_l_, float *diff_states_t_l_, \ weights_data_t **w_layer_, weights_data_t **w_iter_, \ float **bias_, src_data_t *states_t_lm1_, \ src_data_t *states_tm1_l_, float *c_states_tm1_l_, \ float *diff_states_t_lp1_, float *diff_states_tp1_l_, \ float *diff_w_layer_, float *diff_w_iter_, float *diff_bias_, \ acc_data_t *ws_gates_, float *ws_grid_, float *ws_cell_) const #define rnn_grid_execution_sig(f) \ void f(const rnn_utils::rnn_conf_t &rnn, weights_data_t **weights_layer_, \ weights_data_t **weights_states_, float **bias_, \ src_data_t *ws_states_, float *ws_c_states_, \ float *ws_diff_states_, acc_data_t *ws_gates_, float *ws_cell_, \ float *ws_grid_, float *diff_weights_layer_, \ float *diff_weights_iter_, float *diff_bias_) const #define rnn_gemm_sig(f) \ void f(const char transA, const char transB, int m, int n, int k, \ const float alpha, const weights_data_t *a_, const int ldA, \ const src_data_t *b_, const int ldB, const float beta, \ acc_data_t *c_, const int ldC) const #define rnn_bias_prepare_sig(f) \ void f(const rnn_utils::rnn_conf_t &rnn, float **bias_, const float *b_, \ float *scratch_bias_) const #define rnn_bias_finalize_sig(f) \ void f(const rnn_utils::rnn_conf_t &rnn, float *scratch_bias_, \ const float *w_iter_comp, const float *w_layer_comp) const #define rnn_weights_assign_sig(f) \ void f(const rnn_utils::rnn_conf_t &rnn, const memory_desc_t *md, int nld, \ int ld, int OC_size, int IC_size, const int n_parts, \ const int *gates_per_part, const size_t *part_weights_pack_size, \ weights_data_t **weights_, const weights_data_t *w_, \ float **bias_, const float *b_, float *scratch_bias_) const namespace mkldnn { namespace impl { namespace cpu { namespace rnn_utils { using namespace mkldnn::impl::utils; enum execution_direction_t { l2r, r2l, bi_concat, bi_sum, }; enum data_type_conf_t { all_f32, u8u8u8f32, f32u8f32f32, u8u8u8u8, f32u8f32u8 }; struct rnn_conf_t { execution_direction_t exec_dir; data_type_conf_t dt_conf; int n_layer, n_iter, n_dir, n_gates, n_states; int mb; int slc, sic, dic, dlc; int gates_ld, gates_nld, gates_ws_ld; int n_parts_weights_layer, parts_weights_layer[MKLDNN_RNN_MAX_N_PARTS]; int n_parts_weights_iter, parts_weights_iter[MKLDNN_RNN_MAX_N_PARTS]; int n_bias, n_parts_bias, parts_bias[MKLDNN_RNN_MAX_N_PARTS]; size_t part_weights_iter_pack_size[MKLDNN_RNN_MAX_N_PARTS], part_weights_layer_pack_size[MKLDNN_RNN_MAX_N_PARTS]; bool weights_layer_is_packed, weights_iter_is_packed; /* Size of packed data in bytes */ size_t weights_layer_comp_offset, weights_layer_pack_size, weights_iter_comp_offset, weights_iter_pack_size; bool copy_bias; int weights_layer_ld, weights_layer_nld; int diff_weights_layer_ld, diff_weights_layer_nld; int weights_iter_ld, weights_iter_nld; int diff_weights_iter_ld, diff_weights_iter_nld; int states_nld, states_ws_ld; int weights_iter_compensation_size, weights_layer_compensation_size; bool is_fwd, is_training, is_lbr; bool use_workspace; /* Size of workspace for each tensor in bytes */ size_t ws_gates_size, ws_states_size, ws_c_states_size, ws_diff_states_size, ws_cell_comp_size, ws_grid_comp_size, ws_per_cell, ws_bias_size; bool merge_gemm_iter, merge_gemm_layer, use_jit_gemm, use_layer_packed_gemm, use_iter_packed_gemm; }; bool is_ldigo(const memory_desc_wrapper &md); bool is_ldgoi(const memory_desc_wrapper &md); int get_good_ld(int dim, int sizeof_dt); void init_conf(rnn_conf_t &rnn, const rnn_desc_t &rd, const memory_desc_wrapper &src_layer_d, const memory_desc_wrapper &src_iter_d, const memory_desc_wrapper &weights_layer_d, const memory_desc_wrapper &weights_iter_d, const memory_desc_wrapper &dst_layer_d); void set_conf(rnn_conf_t &rnn, const rnn_desc_t &rd, const memory_desc_wrapper &weights_layer_d, const memory_desc_wrapper &weights_iter_d, const memory_desc_wrapper &diff_weights_layer_d, const memory_desc_wrapper &diff_weights_iter_d); void set_offsets(const rnn_conf_t &rnn, size_t &ws_gates_offset, size_t &ws_h_state_offset, size_t &ws_c_state_offset, size_t &ws_diff_states_offset, size_t &ws_grid_comp_offset, size_t &ws_cell_comp_offset, size_t &ws_bias_offset, size_t &scratchpad_size, size_t &workspace_size); void get_scratchpad_and_workspace_sizes(const rnn_conf_t &rnn, size_t &scratchpad_size, size_t &workspace_size); status_t set_expected_desc( rnn_conf_t &rnn, memory_desc_t &weights_md, bool is_iter); status_t set_good_strides(memory_desc_t &weights_md, format_tag_t tag); template <typename T> struct ws_gates_aoc { ws_gates_aoc(const rnn_conf_t &rnn, T *data) : gates_(data, rnn.gates_nld, rnn.gates_ws_ld), DIC_(rnn.dic) {} T &operator()(int batch, int gate, int dic) { return gates_(batch, gate * DIC_ + dic); } private: mkldnn::impl::utils::array_offset_calculator<T, 2> gates_; int DIC_; }; using ws_gates_aoc_t = ws_gates_aoc<float>; using ws_gates_aoc_s32_t = ws_gates_aoc<int32_t>; struct bias_aoc_t { bias_aoc_t(const rnn_conf_t &rnn, const float *data) : bias_(data, rnn.n_bias, rnn.dic) {} const float &operator()(int bias_n, int dic) { return bias_(bias_n, dic); } private: mkldnn::impl::utils::array_offset_calculator<const float, 2> bias_; }; template <typename T> struct ws_states_aoc { ws_states_aoc(const rnn_conf_t &rnn, T *data) : state_(data, rnn.states_nld, rnn.states_ws_ld) {} T &operator()(int batch, int dic) { return state_(batch, dic); } private: mkldnn::impl::utils::array_offset_calculator<T, 2> state_; }; using ws_states_aoc_t = ws_states_aoc<float>; using ws_states_aoc_u8_t = ws_states_aoc<uint8_t>; struct ws_diff_states_aoc_t { ws_diff_states_aoc_t(const rnn_conf_t &rnn, float *data) : diff_states_(data, rnn.n_states + 1, rnn.n_iter + 1, rnn.states_nld, rnn.states_ws_ld) {} float &operator()(int state_n, int batch, int dic) { return diff_states_(state_n, 0, batch, dic); } private: mkldnn::impl::utils::array_offset_calculator<float, 4> diff_states_; }; struct ws_diff_w_iter_aoc_t { ws_diff_w_iter_aoc_t(const rnn_conf_t &rnn, float *data) : diff_weights_iter_( data, rnn.diff_weights_iter_nld, rnn.diff_weights_iter_ld) , DIC_(rnn.dic) {} float &operator()(int sic, int gate, int dic) { return diff_weights_iter_(sic, gate * DIC_ + dic); } private: mkldnn::impl::utils::array_offset_calculator<float, 2> diff_weights_iter_; int DIC_; }; } } } } #endif