/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #ifndef CPU_REF_SOFTMAX_HPP #define CPU_REF_SOFTMAX_HPP #include #include "c_types_map.hpp" #include "memory_tracking.hpp" #include "type_helpers.hpp" #include "utils.hpp" #include "cpu_softmax_pd.hpp" #include "cpu_primitive.hpp" namespace mkldnn { namespace impl { namespace cpu { template struct ref_softmax_fwd_t: public cpu_primitive_t { struct pd_t: public cpu_softmax_fwd_pd_t { using cpu_softmax_fwd_pd_t::cpu_softmax_fwd_pd_t; DECLARE_COMMON_PD_T("ref:any", ref_softmax_fwd_t); status_t init() { bool ok = true && is_fwd() && src_md()->data_type == data_type && attr()->has_default_values(); if (!ok) return status::unimplemented; init_scratchpad(); return status::success; } private: void init_scratchpad() { const int inner_size = utils::array_product( desc()->data_desc.dims + desc()->softmax_axis + 1, desc()->data_desc.ndims - desc()->softmax_axis - 1); if (inner_size > 1) { auto scratchpad = scratchpad_registry().registrar(); scratchpad.book(memory_tracking::names::key_softmax_reduction, sizeof(data_t) * 2 * inner_size); } } }; ref_softmax_fwd_t(const pd_t *apd): cpu_primitive_t(apd) { auto ndims = pd()->desc()->data_desc.ndims; auto dims = pd()->desc()->data_desc.dims; auto axis = pd()->desc()->softmax_axis; outer_size_ = utils::array_product(dims, axis); channels_ = dims[axis]; inner_size_ = utils::array_product(dims + axis + 1, ndims - axis - 1); const memory_desc_wrapper data_d(pd()->src_md()); bool no_axis_blocking = true; for (int iblk = 0; iblk < data_d.blocking_desc().inner_nblks; ++iblk) if (data_d.blocking_desc().inner_idxs[iblk] == axis) no_axis_blocking = false; use_dense_ = inner_size_ == 1 && data_d.is_dense() && no_axis_blocking && data_d.blocking_desc().strides[axis] == 1; } typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { if (use_dense_) execute_forward_dense(ctx); else execute_forward_generic(ctx); return status::success; } private: void execute_forward_dense(const exec_ctx_t &ctx) const; void execute_forward_generic(const exec_ctx_t &ctx) const; void _max(int n, const data_t *x, data_t *max_data) const; void _sub(int n, data_t alpha, const data_t *x, data_t *y) const; void _exp(int n, const data_t *a, data_t *r) const; void _sum(int n, const data_t *x, data_t *sum_data) const; void _scal(int n, data_t alpha, data_t *x) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } bool use_dense_; int outer_size_, channels_, inner_size_; }; template struct ref_softmax_bwd_t: public cpu_primitive_t { struct pd_t: public cpu_softmax_bwd_pd_t { using cpu_softmax_bwd_pd_t::cpu_softmax_bwd_pd_t; DECLARE_COMMON_PD_T("ref:any", ref_softmax_bwd_t); status_t init() { bool ok = true && !is_fwd() && utils::everyone_is(data_type, dst_md()->data_type, diff_src_md()->data_type) && attr()->has_default_values(); if (!ok) return status::unimplemented; return status::success; } }; ref_softmax_bwd_t(const pd_t *apd): cpu_primitive_t(apd) { auto dims = pd()->desc()->diff_desc.dims; auto axis = pd()->desc()->softmax_axis; auto ndims = pd()->desc()->diff_desc.ndims; outer_size_ = utils::array_product(dims, axis); channels_ = dims[axis]; inner_size_ = utils::array_product(dims + axis + 1, ndims - axis - 1); const memory_desc_wrapper data_d(pd()->dst_md()); const memory_desc_wrapper diff_d(pd()->diff_dst_md()); bool no_axis_blocking = true; for (int iblk = 0; iblk < diff_d.blocking_desc().inner_nblks; ++iblk) if (diff_d.blocking_desc().inner_idxs[iblk] == axis) no_axis_blocking = false; use_dense_ = true && inner_size_ == 1 && diff_d == data_d && diff_d.is_dense() && no_axis_blocking && diff_d.blocking_desc().strides[axis] == 1; } typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { if (use_dense_) execute_backward_dense(ctx); else execute_backward_generic(ctx); return status::success; } private: void execute_backward_dense(const exec_ctx_t &ctx) const; void execute_backward_generic(const exec_ctx_t &ctx) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } bool use_dense_; int outer_size_, channels_, inner_size_; }; } } } #endif // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s