/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include #include #include "c_types_map.hpp" #include "mkldnn_thread.hpp" #include "type_helpers.hpp" #include "ref_softmax.hpp" #include "gemm/os_blas.hpp" #ifdef USE_MKL #include "mkl_vml_functions.h" #endif namespace mkldnn { namespace impl { namespace cpu { template void ref_softmax_fwd_t::execute_forward_dense( const exec_ctx_t &ctx) const { auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); parallel_nd(outer_size_, [&](int ou) { const data_t *src_data = src + ou * channels_; data_t *dst_data = dst + ou * channels_; data_t scalar = 0; _max(channels_, src_data, &scalar); _sub(channels_, scalar, src_data, dst_data); _exp(channels_, dst_data, dst_data); _sum(channels_, dst_data, &scalar); _scal(channels_, data_t(1)/scalar, dst_data); }); } template void ref_softmax_fwd_t::execute_forward_generic( const exec_ctx_t &ctx) const { auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); data_t space_max_val = 0, space_denom_val = 0; data_t *space_max = &space_max_val, *space_denom = &space_denom_val; if (inner_size_ > 1) { using namespace memory_tracking::names; space_max = scratchpad(ctx).template get(key_softmax_reduction); space_denom = space_max + inner_size_; } const memory_desc_wrapper data_d(pd()->src_md()); const size_t dim = channels_ * inner_size_; for (int ou = 0; ou < outer_size_; ou++) { utils::array_set(space_max, -FLT_MAX, inner_size_); utils::array_set(space_denom, 0, inner_size_); for (int c = 0; c < channels_; c++) { for(int in = 0; in < inner_size_; in++) { size_t off = data_d.off_l(ou * dim + c * inner_size_ + in); space_max[in] = nstl::max(space_max[in], src[off]); } } for (int c = 0; c < channels_; c++) { for(int in = 0; in < inner_size_; in++) { size_t off = data_d.off_l(ou * dim + c * inner_size_ + in); space_denom[in] += dst[off] = exp(src[off] - space_max[in]); } } for (int c = 0; c < channels_; c++) { for (int in = 0; in < inner_size_; in++) { size_t off = data_d.off_l(ou * dim + c * inner_size_ + in); dst[off] /= space_denom[in]; } } } } template void ref_softmax_fwd_t::_max(int n, const data_t *x, data_t *max_data) const { // Intel(R) C++ Compiler generates the maxps + shuffle pattern // for the max search which works faster #if !defined(__INTEL_COMPILER) // The code below makes a compiler to generate maxps instruction // rather than maxss, which is generated for the 'else' code path auto max_wrapper = [](data_t a, data_t b) { return nstl::max(a, b); }; auto min_wrapper = [](int a, int b) { return nstl::min(a, b); }; constexpr int unroll_factor = 32; data_t max_values[unroll_factor]; if (n < unroll_factor) { data_t max_val = x[0]; for (int i = 1; i < n; i++) { max_val = max_wrapper(max_val, x[i]); } max_data[0] = max_val; return; } for (int i = 0; i < unroll_factor; i++) { max_values[i] = x[i]; } for (int i = unroll_factor; i < n; i += unroll_factor) { int offset = min_wrapper(i, n - unroll_factor); for (int j = 0; j < unroll_factor; j++) { max_values[j] = max_wrapper(max_values[j], x[offset + j]); } } data_t max_val = max_values[0]; for (int i = 1; i < unroll_factor; i++) { max_val = max_wrapper(max_val, max_values[i]); } max_data[0] = max_val; #else max_data[0] = x[0]; for (int c = 1; c < n; ++c) max_data[0] = nstl::max(max_data[0], x[c]); #endif } template void ref_softmax_fwd_t::_sub(int n, data_t alpha, const data_t *x, data_t *y) const { constexpr int unroll_factor = 32; int tail = n % unroll_factor; for (int i = 0; i < n - tail; i += unroll_factor) { PRAGMA_OMP_SIMD() for (int j = 0; j < unroll_factor; j++) { y[i + j] = x[i + j] - alpha; } } PRAGMA_OMP_SIMD() for (int i = n - tail; i < n; i++) { y[i] = x[i] - alpha; } } template void ref_softmax_fwd_t::_exp(int n, const data_t *a, data_t *r) const { #ifdef USE_MKL if (data_type == data_type::f32) { vsExp(n, a, r); return; } #endif parallel_nd(n, [&](int c) { r[c] = expf(a[c]); }); } template void ref_softmax_fwd_t::_sum(int n, const data_t *x, data_t *sum_data) const { #ifdef USE_CBLAS // Here we are summing x's eg. e^z , which are positives // so we can use BLAS ASUM if (data_type == data_type::f32) { sum_data[0] = cblas_sasum(n, x, 1); return; } #endif data_t tsum = static_cast(0); PRAGMA_OMP_SIMD(reduction(+ : tsum)) for (int c = 0; c < n; ++c) tsum += x[c]; sum_data[0] = tsum; } template void ref_softmax_fwd_t::_scal(int n, data_t alpha, data_t *x) const { #ifdef USE_CBLAS if (data_type == data_type::f32) { cblas_sscal(n, alpha, x, 1); return; } #endif parallel_nd(n, [&](int c) { x[c] *= alpha; }); } template struct ref_softmax_fwd_t; // NC/NCHW softmax for along final axe (1 for NC, 3 for NCHW) template void ref_softmax_bwd_t::execute_backward_dense( const exec_ctx_t &ctx) const { auto dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DST); auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); parallel_nd(outer_size_, [&](int ou) { data_t sbr = 0; size_t off = channels_*ou; for (int c = 0; c < channels_; c++) { size_t loff = off + c; data_t ldata = dst[loff]; sbr += diff_dst[loff]*ldata; diff_src[loff] = ldata; } for(int c=0; c < channels_ ; ++c) { size_t loff = off + c; diff_src[loff] *= (diff_dst[loff] - sbr); } }); } template void ref_softmax_bwd_t::execute_backward_generic( const exec_ctx_t &ctx) const { auto dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DST); auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); const memory_desc_wrapper diff_d(pd()->diff_src_md()); const memory_desc_wrapper data_d(pd()->dst_md()); const size_t dim = channels_ * inner_size_; parallel_nd(outer_size_, [&](int ou) { for (int in = 0; in < inner_size_; in++) { data_t sbr = 0; for (int c = 0; c < channels_; c++) { size_t off_diff = diff_d.off_l(ou * dim + c * inner_size_ + in); size_t off_data = diff_d.off_l(ou * dim + c * inner_size_ + in); sbr += diff_dst[off_diff] * dst[off_data]; } for(int c=0; c < channels_ ; ++c) { size_t off_diff = diff_d.off_l(ou * dim + c * inner_size_ + in); size_t off_data = data_d.off_l(ou * dim + c * inner_size_ + in); diff_src[off_diff] = dst[off_data] * (diff_dst[off_diff] - sbr); } } }); } template struct ref_softmax_bwd_t; } } } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s