/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include #include "c_types_map.hpp" #include "math_utils.hpp" #include "mkldnn_thread.hpp" #include "nstl.hpp" #include "type_helpers.hpp" #include "ref_pooling.hpp" namespace mkldnn { namespace impl { namespace cpu { template void ref_pooling_fwd_t::execute_forward( const exec_ctx_t &ctx) const { using namespace alg_kind; using namespace prop_kind; auto alg = pd()->desc()->alg_kind; auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); auto ws = CTX_OUT_MEM(unsigned char *, MKLDNN_ARG_WORKSPACE); const memory_desc_wrapper src_d(pd()->src_md()); const memory_desc_wrapper dst_d(pd()->dst_md()); const memory_desc_wrapper ws_d(pd()->workspace_md()); const data_type_t ws_dt = ws ? ws_d.data_type() : data_type::undef; const int ID = pd()->ID(); const int IH = pd()->IH(); const int IW = pd()->IW(); const int KD = pd()->KD(); const int KH = pd()->KH(); const int KW = pd()->KW(); const int SD = pd()->KSD(); const int SH = pd()->KSH(); const int SW = pd()->KSW(); const int padF = pd()->padFront(); const int padT = pd()->padT(); const int padL = pd()->padL(); const bool is_3d = pd()->desc()->src_desc.ndims == 5; auto apply_offset = [=](int index, int offset) { return (index > offset) ? index - offset : 0; }; auto set_ws = [=](int mb, int oc, int od, int oh, int ow, int value) { if (ws) { assert(ws_dt == data_type::u8 || ws_dt == data_type::s32); size_t offset = is_3d ? ws_d.off(mb, oc, od, oh, ow) : ws_d.off(mb, oc, oh, ow);; if (ws_dt == data_type::u8) { assert(0 <= value && value <= 255); ws[offset] = value; } else reinterpret_cast(ws)[offset] = value; } }; auto ker_max = [=](data_t *d, int mb, int oc, int oh, int ow) { for (int kh = 0; kh < KH; ++kh) { for (int kw = 0; kw < KW; ++kw) { const int ih = oh * SH - padT + kh; const int iw = ow * SW - padL + kw; if (ih < 0 || ih >= IH) continue; if (iw < 0 || iw >= IW) continue; auto s = src[src_d.off(mb, oc, ih, iw)]; if (s > d[0]) { d[0] = s; set_ws(mb, oc, 1, oh, ow, kh*KW + kw); } } } }; auto ker_avg = [=](data_t *d, int mb, int oc, int oh, int ow) { auto ih_start = apply_offset(oh*SH, padT); auto iw_start = apply_offset(ow*SW, padL); auto ih_end = nstl::min(oh*SH - padT + KH, IH); auto iw_end = nstl::min(ow*SW - padL + KW, IW); auto num_summands = (alg == pooling_avg_include_padding) ? KW*KH : (ih_end - ih_start)*(iw_end - iw_start); acc_data_t dst = 0; for (int ih = ih_start; ih < ih_end; ++ih) { for (int iw = iw_start; iw < iw_end; ++iw) { dst += src[src_d.off(mb, oc, ih, iw)]; } } d[0] = math::out_round((float)dst / num_summands); }; auto ker_max_3d = [=](data_t *d, int mb, int oc, int od, int oh, int ow) { for (int kd = 0; kd < KD; ++kd) { for (int kh = 0; kh < KH; ++kh) { for (int kw = 0; kw < KW; ++kw) { const int id = od * SD - padF + kd; const int ih = oh * SH - padT + kh; const int iw = ow * SW - padL + kw; if (id < 0 || id >= ID) continue; if (ih < 0 || ih >= IH) continue; if (iw < 0 || iw >= IW) continue; auto s = src[src_d.off(mb, oc, id, ih, iw)]; if (s > d[0]) { d[0] = s; set_ws(mb, oc, od, oh, ow, kd * KH * KW + kh*KW + kw); } } } } }; auto ker_avg_3d = [=](data_t *d, int mb, int oc, int od, int oh, int ow) { auto id_start = apply_offset(od*SD, padF); auto ih_start = apply_offset(oh*SH, padT); auto iw_start = apply_offset(ow*SW, padL); auto id_end = nstl::min(od*SD - padF + KD, ID); auto ih_end = nstl::min(oh*SH - padT + KH, IH); auto iw_end = nstl::min(ow*SW - padL + KW, IW); auto num_summands = (alg == pooling_avg_include_padding) ? KW*KH*KD : (ih_end - ih_start)*(iw_end - iw_start)*(id_end - id_start); acc_data_t dst = 0; for (int id = id_start; id < id_end; ++id) { for (int ih = ih_start; ih < ih_end; ++ih) { for (int iw = iw_start; iw < iw_end; ++iw) { dst += src[src_d.off(mb, oc, id, ih, iw)]; } } } d[0] = math::out_round((float)dst / num_summands); }; const int MB = pd()->MB(); const int OC = pd()->C(); const int OD = pd()->OD(); const int OH = pd()->OH(); const int OW = pd()->OW(); if (alg == pooling_max) { parallel_nd(MB, OC, OD, OH, OW, [&](int mb, int oc, int od, int oh, int ow) { data_t *d = is_3d ? &dst[dst_d.off(mb, oc, od, oh, ow)] : &dst[dst_d.off(mb, oc, oh, ow)]; d[0] = nstl::numeric_limits::lowest(); set_ws(mb, oc, od, oh, ow, 0); if (is_3d) ker_max_3d(d, mb, oc, od, oh, ow); else ker_max(d, mb, oc, oh, ow); }); } else { parallel_nd(MB, OC, OD, OH, OW, [&](int mb, int oc, int od, int oh, int ow) { data_t *d = is_3d ? &dst[dst_d.off(mb, oc, od, oh, ow)] : &dst[dst_d.off(mb, oc, oh, ow)]; d[0] = 0; if (is_3d) ker_avg_3d(d, mb, oc, od, oh, ow); else ker_avg(d, mb, oc, oh, ow); }); } } template void ref_pooling_bwd_t::execute_backward( const exec_ctx_t &ctx) const { using namespace alg_kind; auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto ws = CTX_IN_MEM(const unsigned char *, MKLDNN_ARG_WORKSPACE); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const memory_desc_wrapper diff_src_d(pd()->diff_src_md()); const memory_desc_wrapper ws_d(pd()->workspace_md()); const int ID = pd()->ID(); const int IH = pd()->IH(); const int IW = pd()->IW(); const int KD = pd()->KD(); const int KH = pd()->KH(); const int KW = pd()->KW(); const int SD = pd()->KSD(); const int SH = pd()->KSH(); const int SW = pd()->KSW(); const int padF = pd()->padFront(); const int padT = pd()->padT(); const int padL = pd()->padL(); const bool is_3d = pd()->desc()->diff_src_desc.ndims == 5; auto alg = pd()->desc()->alg_kind; auto apply_offset = [=](int index, int offset) { return (index > offset) ? index - offset : 0; }; auto ker_zero = [=](int _mb, int _oc) { for (int ih = 0; ih < IH; ++ih) { for (int iw = 0; iw < IW; ++iw) { diff_src[diff_src_d.off(_mb, _oc, ih, iw)] = data_type_t(0); } } }; auto ker_max = [=](const data_t *d, int mb, int oc, int oh, int ow) { const size_t ws_off = ws_d.off(mb, oc, oh, ow); const int index = ws_d.data_type() == data_type::u8 ? (int)ws[ws_off] : ((int *)ws)[ws_off]; const int kw = index % KW; const int kh = index / KW; const int ih = oh * SH - padT + kh; const int iw = ow * SW - padL + kw; // If padding area could fit the kernel, // then input displacement would be out of bounds. // No need to back propagate there as padding is // virtual in pooling_max case. if (ih < 0 || ih >= IH) return; if (iw < 0 || iw >= IW) return; diff_src[diff_src_d.off(mb, oc, ih, iw)] += d[0]; }; auto ker_avg = [=](const data_t *d, int mb, int oc, int oh, int ow) { auto ih_start = apply_offset(oh*SH, padT); auto iw_start = apply_offset(ow*SW, padL); auto ih_end = nstl::min(oh*SH - padT + KH, IH); auto iw_end = nstl::min(ow*SW - padL + KW, IW); auto num_summands = (alg == pooling_avg_include_padding) ? KW*KH : (ih_end - ih_start)*(iw_end - iw_start); for (int ih = ih_start; ih < ih_end; ++ih) { for (int iw = iw_start; iw < iw_end; ++iw) { diff_src[diff_src_d.off(mb, oc, ih, iw)] += d[0] / num_summands; } } }; auto ker_zero_3d = [=](int _mb, int _oc) { for (int id = 0; id < ID; ++id) { for (int ih = 0; ih < IH; ++ih) { for (int iw = 0; iw < IW; ++iw) { diff_src[diff_src_d.off(_mb, _oc, id, ih, iw)] = data_type_t(0); } } } }; auto ker_max_3d = [=](const data_t *d, int mb, int oc, int od, int oh, int ow) { const size_t ws_off = ws_d.off(mb, oc, od, oh, ow); const int index = ws_d.data_type() == data_type::u8 ? (int)ws[ws_off] : ((int *)ws)[ws_off]; const int kw = index % KW; const int kh = (index / KW) % KH; const int kd = (index / KW) / KH; const int id = od * SD - padF + kd; const int ih = oh * SH - padT + kh; const int iw = ow * SW - padL + kw; // If padding area could fit the kernel, // then input displacement would be out of bounds. // No need to back propagate there as padding is // virtual in pooling_max case. if (id < 0 || id >= ID) return; if (ih < 0 || ih >= IH) return; if (iw < 0 || iw >= IW) return; diff_src[diff_src_d.off(mb, oc, id, ih, iw)] += d[0]; }; auto ker_avg_3d = [=](const data_t *d, int mb, int oc, int od, int oh, int ow) { auto id_start = apply_offset(od*SD, padF); auto ih_start = apply_offset(oh*SH, padT); auto iw_start = apply_offset(ow*SW, padL); auto id_end = nstl::min(od*SD - padF + KD, ID); auto ih_end = nstl::min(oh*SH - padT + KH, IH); auto iw_end = nstl::min(ow*SW - padL + KW, IW); auto num_summands = (alg == pooling_avg_include_padding) ? KW*KH*KD : (ih_end - ih_start)*(iw_end - iw_start)*(id_end - id_start); for (int id = id_start; id < id_end; ++id) for (int ih = ih_start; ih < ih_end; ++ih) for (int iw = iw_start; iw < iw_end; ++iw) { diff_src[diff_src_d.off(mb, oc, id, ih, iw)] += d[0] / num_summands; } }; const int MB = pd()->MB(); const int OC = pd()->C(); const int OD = pd()->OD(); const int OH = pd()->OH(); const int OW = pd()->OW(); if (pd()->desc()->alg_kind == alg_kind::pooling_max) { parallel_nd(MB, OC, [&](int mb, int oc) { if (is_3d) ker_zero_3d(mb, oc); else ker_zero(mb, oc); for (int od = 0; od < OD; ++od) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { const data_t *d = is_3d ? &diff_dst[diff_dst_d.off(mb, oc, od, oh, ow)] : &diff_dst[diff_dst_d.off(mb, oc, oh, ow)]; if (is_3d) ker_max_3d(d, mb, oc, od, oh, ow); else ker_max(d, mb, oc, oh, ow); } } } }); } else { parallel_nd(MB, OC, [&](int mb, int oc) { if (is_3d) ker_zero_3d(mb, oc); else ker_zero(mb, oc); for (int od = 0; od < OD; ++od) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { const data_t *d = is_3d ? &diff_dst[diff_dst_d.off(mb, oc, od, oh, ow)] : &diff_dst[diff_dst_d.off(mb, oc, oh, ow)]; if (is_3d) ker_avg_3d(d, mb, oc, od, oh, ow); else ker_avg(d, mb, oc, oh, ow); } } } }); } } template struct ref_pooling_fwd_t; template struct ref_pooling_fwd_t; template struct ref_pooling_fwd_t; template struct ref_pooling_fwd_t; template struct ref_pooling_bwd_t; template struct ref_pooling_bwd_t; } } } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s