/******************************************************************************* * Copyright 2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include "c_types_map.hpp" #include "type_helpers.hpp" #include "mkldnn_thread.hpp" #include "mkldnn_traits.hpp" #include "math_utils.hpp" #include "ref_deconvolution.hpp" namespace mkldnn { namespace impl { namespace cpu { void ref_deconvolution_fwd_t::compute_fwd_bias(const data_t *bias, data_t *dst) const { const memory_desc_wrapper dst_d(pd()->dst_md()); const int G = pd()->G(); const int MB = pd()->MB(); const int OH = pd()->OH(); const int OW = pd()->OW(); const int OD = pd()->OD(); const int OC = pd()->OC() / G; const int ndims = pd()->desc()->src_desc.ndims; parallel_nd(MB, G, OC, OD, OH, OW, [&](int mb, int g, int oc, int od, int oh, int ow) { auto b = bias[g * OC + oc]; switch (ndims) { case 5: dst[dst_d.off(mb, g * OC + oc, od, oh, ow)] += b; break; case 4: dst[dst_d.off(mb, g * OC + oc, oh, ow)] += b; break; case 3: dst[dst_d.off(mb, g * OC + oc, ow)] += b; break; default: assert(!"invalid dimension size"); } }); } void ref_deconvolution_fwd_t::compute_fwd_bias_ncdhw(const data_t *bias, data_t *dst) const { const memory_desc_wrapper dst_d(pd()->dst_md()); const int MB = pd()->MB(); const int OC = pd()->OC(); const int SP = pd()->OW()*pd()->OH()*pd()->OD(); parallel_nd(MB, OC, [&](int mb, int oc) { PRAGMA_OMP_SIMD() for (int sp = 0; sp < SP; ++sp) { auto offset = (size_t)(mb * OC + oc) * SP + sp; dst[offset] += bias[oc]; } }); } template void ref_deconvolution_fwd_t::compute_fwd_bias_nCdhwXc(const data_t *bias, data_t *dst) const { const memory_desc_wrapper dst_d(pd()->dst_md()); const int MB = pd()->MB(); const int OC = pd()->OC(); const int SP = pd()->OW() * pd()->OH() * pd()->OD(); const ptrdiff_t stride_mb = dst_d.blocking_desc().strides[0]; parallel_nd(MB, utils::div_up(OC, blksize), SP, [&](int mb, int oc_blk, int sp) { int oc = oc_blk * blksize; auto offset = mb * stride_mb + oc * SP + sp * blksize; const int blk = nstl::min(blksize, OC - oc); PRAGMA_OMP_SIMD() for (int i = 0; i < blk; ++i) dst[offset + i] += bias[oc + i]; }); } void ref_deconvolution_bwd_weights_t::compute_bwd_bias(const data_t *diff_dst, data_t *diff_bias) const { const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const int G = pd()->G(); const int MB = pd()->MB(); const int OH = pd()->OH(); const int OW = pd()->OW(); const int OC = pd()->OC() / G; const int OD = pd()->OD(); const int ndims = pd()->desc()->src_desc.ndims; parallel_nd(G, OC, [&](int g, int oc) { data_t db = 0; for (int mb = 0; mb < MB; ++mb) { for (int od = 0; od < OD; ++od) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { switch (ndims) { case 5: db += diff_dst[diff_dst_d.off( mb, g * OC + oc, od, oh, ow)]; break; case 4: db += diff_dst[diff_dst_d.off( mb, g * OC + oc, oh, ow)]; break; case 3: db += diff_dst[diff_dst_d.off(mb, g * OC + oc, ow)]; break; default: assert(!"invalid dimension size"); } } } } } diff_bias[g * OC + oc] = db; }); } void ref_deconvolution_bwd_weights_t::compute_bwd_bias_ncdhw( const data_t *diff_dst, data_t *diff_bias) const { const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const int OC = pd()->OC(); const int MB = pd()->MB(); const int SP = pd()->OH()*pd()->OW()*pd()->OD(); parallel_nd(OC, [&](int oc) { data_t db = 0; for (int mb = 0; mb < MB; ++mb) { PRAGMA_OMP_SIMD() for (int sp = 0; sp < SP; ++sp) { auto offset = (size_t)(mb * OC + oc) * SP + sp; db += diff_dst[offset]; } } diff_bias[oc] = db; }); } template void ref_deconvolution_bwd_weights_t::compute_bwd_bias_nCdhwXc( const data_t *diff_dst, data_t *diff_bias) const { const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const int OC = pd()->OC(); const int MB = pd()->MB(); const int SP = pd()->OH() * pd()->OW() * pd()->OD(); const ptrdiff_t stride_mb = diff_dst_d.blocking_desc().strides[0]; parallel_nd(utils::div_up(OC, blksize), [&](int ocb) { data_t db[blksize] = {0}; for (int mb = 0; mb < MB; ++mb) { for (int sp = 0; sp < SP; ++sp) { auto offset = mb * stride_mb + (ocb * SP + sp) * blksize; PRAGMA_OMP_SIMD() for (int i = 0; i < blksize; ++i) db[i] += diff_dst[offset+i]; } } const int blk = nstl::min(blksize, OC - ocb * blksize); PRAGMA_OMP_SIMD() for (int i = 0; i < blk; ++i) diff_bias[ocb * blksize + i] = db[i]; }); } template void ref_deconvolution_fwd_t::compute_fwd_bias_nCdhwXc<8>( const data_t *diff_dst, data_t *diff_bias) const; template void ref_deconvolution_fwd_t::compute_fwd_bias_nCdhwXc<16>( const data_t *diff_dst, data_t *diff_bias) const; template void ref_deconvolution_bwd_weights_t::compute_bwd_bias_nCdhwXc<8>( const data_t *diff_dst, data_t *diff_bias) const; template void ref_deconvolution_bwd_weights_t::compute_bwd_bias_nCdhwXc<16>( const data_t *diff_dst, data_t *diff_bias) const; } } } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s