/******************************************************************************* * Copyright 2017-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include #include "c_types_map.hpp" #include "type_helpers.hpp" #include "math_utils.hpp" #include "mkldnn_thread.hpp" #include "nstl.hpp" #include "nchw_pooling.hpp" namespace mkldnn { namespace impl { namespace cpu { template void nchw_pooling_fwd_t::execute_forward( const exec_ctx_t &ctx) const { using namespace alg_kind; auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); auto ws = CTX_OUT_MEM(unsigned char *, MKLDNN_ARG_WORKSPACE); const memory_desc_wrapper ws_d(pd()->workspace_md()); const data_type_t ws_dt = ws ? ws_d.data_type() : data_type::undef; const int MB = pd()->MB(); const int C = pd()->C(); const int OD = pd()->OD(); const int OH = pd()->OH(); const int OW = pd()->OW(); const int ID = pd()->ID(); const int IH = pd()->IH(); const int IW = pd()->IW(); const int KD = pd()->KD(); const int KH = pd()->KH(); const int KW = pd()->KW(); const int SD = pd()->KSD(); const int SH = pd()->KSH(); const int SW = pd()->KSW(); const int padF = pd()->padFront(); const int padT = pd()->padT(); const int padL = pd()->padL(); auto alg = pd()->desc()->alg_kind; auto apply_offset = [=](int index, int offset) { return (index > offset) ? index - offset : 0; }; auto set_ws = [=](int mb, int c, int od, int oh, int ow, int value) { if (ws) { assert(ws_dt == data_type::u8 || ws_dt == data_type::s32); size_t ws_offset = (size_t)OW * OH * OD * C * mb + (size_t)OW * OH * OD * c + (size_t)OW * OH * od + (size_t)OW * oh + (size_t)ow; if (ws_dt == data_type::u8) { assert(0 <= value && value <= 255); ws[ws_offset] = value; } else reinterpret_cast(ws)[ws_offset] = value; } }; auto ker_max = [=](data_t *d, int mb, int c, int od, int oh, int ow) { for (int kd = 0; kd < KD; ++kd) { for (int kh = 0; kh < KH; ++kh) { for (int kw = 0; kw < KW; ++kw) { const int id = od * SD - padF + kd; const int ih = oh * SH - padT + kh; const int iw = ow * SW - padL + kw; if (id < 0 || id >= ID) continue; if (ih < 0 || ih >= IH) continue; if (iw < 0 || iw >= IW) continue; auto src_offset = (size_t)IW * IH * ID * C * mb + (size_t)IW * IH * ID * c + (size_t)IW * IH * id + (size_t)IW * ih + (size_t)iw; auto s = src[src_offset]; if (s > d[0]) { d[0] = s; set_ws(mb, c, od, oh, ow, kd*KH*KW + kh*KW + kw); } } } } }; auto ker_avg = [=](data_t *d, int mb, int c, int od, int oh, int ow) { auto id_start = apply_offset(od*SD, padF); auto ih_start = apply_offset(oh*SH, padT); auto iw_start = apply_offset(ow*SW, padL); auto id_end = nstl::min(od*SD - padF + KD, ID); auto ih_end = nstl::min(oh*SH - padT + KH, IH); auto iw_end = nstl::min(ow*SW - padL + KW, IW); auto num_summands = (alg == pooling_avg_include_padding) ? KD*KW*KH : (id_end - id_start)*(ih_end - ih_start)*(iw_end - iw_start); for (int id = id_start; id < id_end; ++id) { for (int ih = ih_start; ih < ih_end; ++ih) { for (int iw = iw_start; iw < iw_end; ++iw) { auto src_offset = (size_t)IW * IH * ID * C * mb + (size_t)IW * IH * ID * c + (size_t)IW * IH * id + (size_t)IW * ih + (size_t)iw; d[0] += src[src_offset]; } } } d[0] = math::out_round((float)d[0] / num_summands); }; if (pd()->desc()->alg_kind == pooling_max) { parallel_nd(MB, C, OD, OH, OW, [&](int mb, int c, int od, int oh, int ow) { size_t dst_offset = (size_t)OW * OH * OD * C * mb + (size_t)OW * OH * OD * c + (size_t)OW * OH * od + (size_t)OW * oh + (size_t)ow; data_t *d = &dst[dst_offset]; d[0] = nstl::numeric_limits::lowest(); set_ws(mb, c, od, oh, ow, 0); ker_max(d, mb, c, od, oh, ow); }); } else { parallel_nd(MB, C, OD, OH, OW, [&](int mb, int c, int od, int oh, int ow) { size_t dst_offset = (size_t)OW * OH * OD * C * mb + (size_t)OW * OH * OD * c + (size_t)OW * OH * od + (size_t)OW * oh + (size_t)ow; data_t *d = &dst[dst_offset]; d[0] = 0; ker_avg(d, mb, c, od, oh, ow); }); } } template void nchw_pooling_bwd_t::execute_backward( const exec_ctx_t &ctx) const { using namespace alg_kind; auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto ws = CTX_IN_MEM(const unsigned char *, MKLDNN_ARG_WORKSPACE); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); const memory_desc_wrapper ws_d(pd()->workspace_md()); const int MB = pd()->MB(); const int C = pd()->C(); const int OD = pd()->OD(); const int OH = pd()->OH(); const int OW = pd()->OW(); const int ID = pd()->ID(); const int IH = pd()->IH(); const int IW = pd()->IW(); const int KD = pd()->KD(); const int KH = pd()->KH(); const int KW = pd()->KW(); const int SD = pd()->KSD(); const int SH = pd()->KSH(); const int SW = pd()->KSW(); const int padF = pd()->padFront(); const int padT = pd()->padT(); const int padL = pd()->padL(); const bool is_3d = pd()->desc()->diff_src_desc.ndims == 5; auto alg = pd()->desc()->alg_kind; auto apply_offset = [=](int index, int offset) { return (index > offset) ? index - offset : 0; }; auto ker_zero = [=](int mb, int c) { size_t diff_src_offset = (size_t)mb*C*ID*IH*IW + (size_t)c*ID*IH*IW; for (int id = 0; id < ID; ++id) { for (int ih = 0; ih < IH; ++ih) { for (int iw = 0; iw < IW; ++iw) { diff_src[diff_src_offset++] = 0; } } } }; auto ker_max = [=](const data_t *d, int mb, int c, int od, int oh, int ow) { auto b_c = ws_d.blocking_desc().inner_nblks == 0 ? 1 : ws_d.blocking_desc().inner_blks[0]; auto ws_offset = is_3d ? ws_d.blk_off(mb, c / b_c, od, oh, ow) + c % b_c : ws_d.blk_off(mb, c / b_c, oh, ow) + c % b_c; const int index = ws_d.data_type() == data_type::u8 ? (int)ws[ws_offset] : ((const int *)ws)[ws_offset]; const int kw = index % KW; const int kh = (index / KW) % KH; const int kd = (index / KW) / KH; const int id = od * SD - padF + kd; const int ih = oh * SH - padT + kh; const int iw = ow * SW - padL + kw; // If padding area could fit the kernel, // then input displacement would be out of bounds. // No need to back propagate there as padding is // virtual in pooling_max case. if (id < 0 || id >= ID) return; if (ih < 0 || ih >= IH) return; if (iw < 0 || iw >= IW) return; size_t diff_src_offset = (size_t)mb*C*ID*IH*IW + (size_t)c*ID*IH*IW + (size_t)id*IH*IW + (size_t)ih*IW + (size_t)iw; diff_src[diff_src_offset] += d[0]; }; auto ker_avg = [=](const data_t *d, int mb, int c, int od, int oh, int ow) { auto id_start = apply_offset(od*SD, padF); auto ih_start = apply_offset(oh*SH, padT); auto iw_start = apply_offset(ow*SW, padL); auto id_end = nstl::min(od*SD - padF + KD, ID); auto ih_end = nstl::min(oh*SH - padT + KH, IH); auto iw_end = nstl::min(ow*SW - padL + KW, IW); size_t num_summands = (alg == pooling_avg_include_padding) ? (size_t)KW*KH*KD : (size_t)(id_end - id_start)*(ih_end - ih_start) *(iw_end - iw_start); for (int id = id_start; id < id_end; ++id) { for (int ih = ih_start; ih < ih_end; ++ih) { for (int iw = iw_start; iw < iw_end; ++iw) { size_t diff_src_offset = (size_t)mb*C*ID*IH*IW + (size_t)c*ID*IH*IW + (size_t)id*IH*IW + (size_t)ih*IW + (size_t)iw; diff_src[diff_src_offset] += d[0] / num_summands; } } } }; if (pd()->desc()->alg_kind == pooling_max) { parallel_nd(MB, C, [&](int mb, int c) { size_t diff_dst_offset = (size_t)mb*C*OD*OH*OW + (size_t)c*OD*OH*OW; ker_zero(mb, c); for (int od = 0; od < OD; ++od) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { const data_t *d = &diff_dst[diff_dst_offset++]; ker_max(d, mb, c, od, oh, ow); } } } }); } else { parallel_nd(MB, C, [&](int mb, int c) { size_t diff_dst_offset = (size_t)mb*C*OD*OH*OW + (size_t)c*OD*OH*OW; ker_zero(mb, c); for (int od = 0; od < OD; ++od) { for (int oh = 0; oh < OH; ++oh) { for (int ow = 0; ow < OW; ++ow) { const data_t *d = &diff_dst[diff_dst_offset++]; ker_avg(d, mb, c, od, oh, ow); } } } }); } } template struct nchw_pooling_fwd_t; template struct nchw_pooling_bwd_t; } } } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s