/******************************************************************************* * Copyright 2017-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include "mkldnn_types.h" #include "c_types_map.hpp" #include "jit_sse42_convolution.hpp" #include "mkldnn_thread.hpp" namespace mkldnn { namespace impl { namespace cpu { using namespace mkldnn::impl::status; using namespace mkldnn::impl::utils; #define src_blk_off(f, n, c, h, w) \ (pd()->ndims() == 3) \ ? (f).blk_off(n, c, w) \ : (f).blk_off(n, c, h, w) #define wht_blk_off_(f, g, ...) \ pd()->with_groups() \ ? (f).blk_off(g, __VA_ARGS__) \ : (f).blk_off(__VA_ARGS__) #define wht_blk_off(f, g, oc, ic, kh, kw) \ pd()->ndims() == 3 \ ? wht_blk_off_(f, g, oc, ic, kw) \ : wht_blk_off_(f, g, oc, ic, kh, kw) void jit_sse42_convolution_fwd_t::execute_forward( const exec_ctx_t &ctx) const { auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); const memory_desc_wrapper src_d(pd()->src_md()); const memory_desc_wrapper dst_d(pd()->dst_md()); const memory_desc_wrapper weights_d(pd()->weights_md(0)); const memory_desc_wrapper bias_d(pd()->weights_md(1)); const auto &jcp = kernel_->jcp; int ocb_work = div_up(jcp.nb_oc, jcp.nb_oc_blocking); const size_t work_amount = jcp.mb * jcp.ngroups * ocb_work * jcp.oh; parallel(0, [&](const int ithr, const int nthr) { size_t start{ 0 }, end{ 0 }; balance211(work_amount, nthr, ithr, start, end); int icbb = 0; while (icbb < jcp.nb_ic) { int icb_step = jcp.nb_ic_blocking; int icb_step_rem = jcp.nb_ic - icbb; if (icb_step_rem < jcp.nb_ic_blocking_max) icb_step = icb_step_rem; size_t n{0}, g{0}, ocbb{0}, oh{0}; nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work, oh, jcp.oh); for (size_t iwork = start; iwork < end; ++iwork) { int ocb = ocbb * jcp.nb_oc_blocking; int ocb_num = jcp.nb_oc_blocking; for (int icb = icbb; icb < icbb + icb_step; ++icb) { auto par_conv = jit_conv_call_s(); const int ij = oh * jcp.stride_h; const int i_t_overflow = nstl::max(0, jcp.t_pad - ij); const int i_b_overflow = nstl::max(jcp.ih, ij + (jcp.kh-1) * (jcp.dilate_h+1) - jcp.t_pad+1) - jcp.ih; const size_t _oc = g * jcp.nb_oc + ocb; const size_t _ic = g * jcp.nb_ic + icb; const int ih = nstl::max(ij - jcp.t_pad + div_up(i_t_overflow, (jcp.dilate_h+1)) * (jcp.dilate_h + 1), 0); par_conv.src = &src[src_blk_off(src_d, n, jcp.ic == 3 ? 0 : _ic, ih, 0)]; par_conv.dst = &dst[src_blk_off(dst_d, n, _oc, oh, 0)]; const int wh = div_up(i_t_overflow, (jcp.dilate_h + 1)); par_conv.filt = &weights[wht_blk_off(weights_d, g, ocb, jcp.ic == 3 ? 0 : icb, wh, 0)]; if (icb == 0) { if (bias) par_conv.bias = &bias[bias_d.blk_off(_oc * jcp.oc_block)]; par_conv.flags |= FLAG_IC_FIRST; } if (jcp.with_eltwise && icb + 1 == jcp.nb_ic) { par_conv.flags |= FLAG_IC_LAST; } par_conv.oc_blocks = nstl::min(ocb + ocb_num, jcp.nb_oc) - ocb; par_conv.kw_padding = 0; const int kh_padding = jcp.kh - div_up(i_t_overflow, (jcp.dilate_h + 1)) - div_up(i_b_overflow, (jcp.dilate_h + 1)); par_conv.kh_padding = nstl::max(0, kh_padding); kernel_->jit_ker(&par_conv); } nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work, oh, jcp.oh); } icbb += icb_step; } }); if (pd()->wants_zero_pad_dst()) ctx.memory(MKLDNN_ARG_DST)->zero_pad(); } } } }