/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include "c_types_map.hpp" #include "mkldnn_thread.hpp" #include "type_helpers.hpp" #include "utils.hpp" #include "jit_avx2_convolution.hpp" namespace mkldnn { namespace impl { namespace cpu { using namespace mkldnn::impl::status; using namespace mkldnn::impl::memory_tracking::names; using namespace mkldnn::impl::utils; #define src_blk_off(f, n, c, d, h, w) \ (pd()->ndims() == 3) \ ? (f).blk_off(n, c, w) \ : (pd()->ndims() == 4) \ ? (f).blk_off(n, c, h, w) \ : (f).blk_off(n, c, d, h, w) #define wht_blk_off_(f, g, ...) \ pd()->with_groups() ? (f).blk_off(g, __VA_ARGS__) : (f).blk_off(__VA_ARGS__) #define wht_blk_off(f, g, oc, ic, kd, kh, kw) \ (pd()->ndims() == 3) \ ? wht_blk_off_(f, g, oc, ic, kw) \ : (pd()->ndims() == 4) \ ? wht_blk_off_(f, g, oc, ic, kh, kw) \ : wht_blk_off_(f, g, oc, ic, kd, kh, kw) void jit_avx2_convolution_fwd_t::execute_forward(const exec_ctx_t &ctx) const { auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); const memory_desc_wrapper src_d(pd()->src_md()); const memory_desc_wrapper dst_d(pd()->dst_md()); const memory_desc_wrapper weights_d(pd()->weights_md(0)); const memory_desc_wrapper bias_d(pd()->weights_md(1)); const auto &jcp = kernel_->jcp; int ocb_work = div_up(jcp.nb_oc, jcp.nb_oc_blocking); const size_t work_amount = jcp.mb * jcp.ngroups * ocb_work * jcp.od * jcp.oh; auto ker = [&](const int ithr, const int nthr) { size_t start{0}, end{0}; balance211(work_amount, nthr, ithr, start, end); int icbb = 0; while (icbb < jcp.nb_ic) { int icb_step = jcp.nb_ic_blocking; int icb_step_rem = jcp.nb_ic - icbb; if (icb_step_rem < jcp.nb_ic_blocking_max) icb_step = icb_step_rem; size_t n{0}, g{0}, ocbb{0}, oh{0}, od{0}; nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work, od, jcp.od, oh, jcp.oh); for (size_t iwork = start; iwork < end; ++iwork) { int ocb = ocbb * jcp.nb_oc_blocking; int ocb_num = jcp.nb_oc_blocking; for (int icb = icbb; icb < icbb + icb_step; ++icb) { auto par_conv = jit_conv_call_s(); const int ij = oh * jcp.stride_h; const int i_t_overflow = nstl::max(0, jcp.t_pad - ij); const int i_b_overflow = nstl::max(jcp.ih, ij + (jcp.kh-1) * (jcp.dilate_h+1) - jcp.t_pad+1) - jcp.ih; const int dj = od * jcp.stride_d; const int d_t_overflow = nstl::max(0, jcp.f_pad - dj); const int d_b_overflow = nstl::max(jcp.id, dj + (jcp.kd-1) * (jcp.dilate_d+1) - jcp.f_pad+1) - jcp.id; const size_t _oc = g * jcp.nb_oc + ocb; const size_t _ic = g * jcp.nb_ic * jcp.nonblk_group_off + icb; const int ih = nstl::max(ij - jcp.t_pad + div_up(i_t_overflow, (jcp.dilate_h+1)) * (jcp.dilate_h + 1), 0); const int id = nstl::max(dj - jcp.f_pad + div_up(d_t_overflow, (jcp.dilate_d+1)) * (jcp.dilate_d + 1), 0); par_conv.src = &src[src_blk_off(src_d, n, jcp.ic == 3 ? 0 : _ic, id, ih, 0)]; par_conv.dst = &dst[src_blk_off(dst_d, n, _oc, od, oh, 0)]; const int wh = div_up(i_t_overflow, (jcp.dilate_h + 1)); const int wd = div_up(d_t_overflow, (jcp.dilate_d + 1)); par_conv.filt = &weights[wht_blk_off(weights_d, g, ocb, jcp.ic == 3 ? 0 : icb, wd, wh, 0)]; if (icb == 0) { if (bias) par_conv.bias = &bias[bias_d.blk_off(_oc * jcp.oc_block)]; par_conv.flags |= FLAG_IC_FIRST; } if (jcp.with_eltwise && icb + 1 == jcp.nb_ic) { par_conv.flags |= FLAG_IC_LAST; } par_conv.oc_blocks = nstl::min(ocb + ocb_num, jcp.nb_oc) - ocb; par_conv.kw_padding = 0; const int kh_padding = jcp.kh - div_up(i_t_overflow, (jcp.dilate_h + 1)) - div_up(i_b_overflow, (jcp.dilate_h + 1)); par_conv.kh_padding = nstl::max(0, kh_padding); const int kd_padding = jcp.kd - div_up(d_t_overflow, (jcp.dilate_d + 1)) - div_up(d_b_overflow, (jcp.dilate_d + 1)); par_conv.kd_padding = nstl::max(0, kd_padding); kernel_->jit_ker(&par_conv); } nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work, od, jcp.od, oh, jcp.oh); } icbb += icb_step; } }; if (pd()->wants_padded_bias()) { auto padded_bias = scratchpad(ctx).get(key_conv_padded_bias); utils::array_copy(padded_bias, bias, jcp.oc_without_padding); utils::array_set(padded_bias + jcp.oc_without_padding, 0.f, jcp.oc - jcp.oc_without_padding); bias = padded_bias; } parallel(0, ker); if (pd()->wants_zero_pad_dst()) ctx.memory(MKLDNN_ARG_DST)->zero_pad(); } void jit_avx2_convolution_bwd_data_t::execute_backward_data( const exec_ctx_t &ctx) const { auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const memory_desc_wrapper diff_src_d(pd()->diff_src_md()); const memory_desc_wrapper weights_d(pd()->weights_md(0)); const auto &jcp = kernel_->jcp; int icb_work = jcp.nb_ic / jcp.nb_ic_blocking; int ih_block_size = jcp.ih; int num_ih_blocks = utils::div_up(jcp.ih, ih_block_size); size_t work_amount = jcp.mb * jcp.ngroups * icb_work * num_ih_blocks; if (work_amount < (size_t)2 * mkldnn_get_max_threads()) { ih_block_size = 1; num_ih_blocks = utils::div_up(jcp.ih, ih_block_size); work_amount *= num_ih_blocks; } auto ker = [&](const int ithr, const int nthr) { size_t start{0}, end{0}; balance211(work_amount, nthr, ithr, start, end); size_t n{0}, g{0}, icbb{0}, ihb{0}; nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, icbb, icb_work, ihb, num_ih_blocks); for (size_t iwork = start; iwork < end; ++iwork) { for (int oc = 0; oc < jcp.nb_oc; oc += jcp.nb_oc_blocking) for (int id = 0; id < jcp.id; ++id) { auto par_conv = jit_conv_call_s(); const int idp = jcp.id + 2 * jcp.f_pad; const int d_t_overflow = nstl::max(0, jcp.kd - 1 - id - jcp.f_pad); const int back_pad = idp - jcp.id - jcp.f_pad; const int d_b_overflow = nstl::max(0, jcp.kd - 1 - (jcp.id - 1 - id) - back_pad); const int od = id + jcp.f_pad - d_b_overflow; int ih_start = ihb * ih_block_size; int ih_end = nstl::min(jcp.ih, ih_start + ih_block_size); for (int ih = ih_start; ih < ih_end; ++ih) { const int i_t_overflow = nstl::max(0, (jcp.kh - 1 - ih - jcp.t_pad) / jcp.stride_h); const int i_b_overflow = nstl::max(0, (jcp.kh - jcp.ih + ih - jcp.b_pad) / jcp.stride_h); int overflow_kh_hi = jcp.kh - 1 - abs((jcp.ih - 1 + jcp.b_pad - ih) % jcp.stride_h); int overflow_kh_lo = (ih + jcp.t_pad) % jcp.stride_h; par_conv.kd_padding = jcp.kd - d_t_overflow - d_b_overflow; par_conv.kh_padding = (overflow_kh_hi - overflow_kh_lo) / jcp.stride_h + 1 - i_t_overflow - i_b_overflow; par_conv.kw_padding = 0; const int k_lo = overflow_kh_lo + i_b_overflow * jcp.stride_h; const int oh = (ih + jcp.t_pad - k_lo) / jcp.stride_h; par_conv.src = &diff_src[src_blk_off(diff_src_d, n, /*jcp.ic == 3 ? 0 :*/ g * jcp.nb_ic + jcp.nb_ic_blocking * icbb, id, ih, 0)]; par_conv.dst = &diff_dst[src_blk_off(diff_dst_d, n, g * jcp.nb_oc + oc, od, oh, 0)]; par_conv.filt = &weights[wht_blk_off(weights_d, g, oc, jcp.ic == 3 ? 0 : jcp.nb_ic_blocking * icbb, d_b_overflow, k_lo, 0)]; par_conv.src_prf = nullptr; par_conv.dst_prf = nullptr; par_conv.filt_prf = nullptr; par_conv.channel = oc; par_conv.ch_blocks = nstl::min(jcp.nb_oc - oc, jcp.nb_oc_blocking); kernel_->jit_ker(&par_conv); } } nd_iterator_step(n, jcp.mb, g, jcp.ngroups, icbb, icb_work, ihb, num_ih_blocks); } }; parallel(0, ker); } void jit_avx2_convolution_bwd_weights_t::execute_backward_weights( const exec_ctx_t &ctx) const { auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS); auto diff_bias_in = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS); auto scratchpad = this->scratchpad(ctx); data_t *diff_bias = pd()->wants_padded_bias() ? scratchpad.get(key_conv_padded_bias) : diff_bias_in; const memory_desc_wrapper src_d(pd()->src_md()); const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const memory_desc_wrapper diff_weights_d(pd()->diff_weights_md(0)); const auto &jcp = kernel_->jcp; auto reducer_bia_scratchpad = memory_tracking::grantor_t(scratchpad, prefix_reducer_bia); auto rb = this->reducer_bias_; rb->init(reducer_bia_scratchpad); auto reducer_wei_scratchpad = memory_tracking::grantor_t(scratchpad, prefix_reducer_wei); auto rw = this->reducer_weights_; rw->init(reducer_wei_scratchpad); auto ker = [&](int ithr, int nthr) { assert(nthr == rw->balancer().nthr_); const int w_job_start = rw->balancer().ithr_job_off(ithr); const int w_njobs = rw->balancer().ithr_njobs(ithr); if (w_njobs == 0) return; /* reduction dimension */ int img_od_start{0}, img_od_end{0}, img{0}, od_s{0}; balance211(jcp.mb * jcp.od, rw->balancer().nthr_per_group_, rw->balancer().id_in_group(ithr), img_od_start, img_od_end); int img_start = img_od_start, img_end = img_od_end; nd_iterator_init(img_start, img, jcp.mb, od_s, jcp.od); const int img_first = img; /* jobs */ int g_start{0}, ocb_start{0}, icb_start{0}; nd_iterator_init(w_job_start, g_start, jcp.ngroups, ocb_start, jcp.nb_oc, icb_start, jcp.nb_ic); while (img_start < img_end) { int g = g_start, ocb = ocb_start, icb = icb_start; const int work_rem = img_end - img_start; const int od_e = od_s + work_rem > jcp.od ? jcp.od : od_s + work_rem; const int id_s = od_s * jcp.stride_d; const int idp = jcp.id + jcp.f_pad + jcp.back_pad; if (id_s < idp - jcp.back_pad - jcp.kd + 1) for (int w_job_loc = 0; w_job_loc < w_njobs; ++w_job_loc) { const size_t _oc = g * jcp.nb_oc + ocb; const size_t _ic = g * jcp.nb_ic + icb; /* TODO: put dw <-- 0 in kernel */ if (img == img_first) array_set(rw->get_local_ptr(ithr, diff_weights, reducer_wei_scratchpad) + w_job_loc * rw->balancer().job_size_, 0, rw->balancer().job_size_); for (int od = od_s; od < od_e; ++od) { const int id = od * jcp.stride_d; if (id >= jcp.id - jcp.back_pad - jcp.kd + 1) break; auto par_conv = jit_conv_call_s(); par_conv.src = &src[src_blk_off(src_d, img, _ic, id, 0, 0)]; par_conv.dst = &diff_dst[src_blk_off(diff_dst_d, img, _oc, od, 0, 0)]; par_conv.filt = rw->get_local_ptr(ithr, diff_weights, reducer_wei_scratchpad) + w_job_loc * rw->balancer().job_size_; kernel_->jit_ker(&par_conv); } nd_iterator_step(g, jcp.ngroups, ocb, jcp.nb_oc, icb, jcp.nb_ic); } nd_iterator_jump(img_start, img_end, img, jcp.mb, od_s, jcp.od); } rw->reduce(ithr, diff_weights, reducer_wei_scratchpad); }; auto ker_bias = [&](int ithr, int nthr) { assert(nthr == rb->balancer().nthr_); const int b_job_start = rb->balancer().ithr_job_off(ithr); const int b_njobs = rb->balancer().ithr_njobs(ithr); if (b_njobs == 0) return; /* reduction dimension */ int img_start{0}, img_end{0}; balance211(jcp.mb, rb->balancer().nthr_per_group_, rb->balancer().id_in_group(ithr), img_start, img_end); /* jobs */ int g_start{0}, ocb_start{0}; nd_iterator_init(b_job_start, g_start, jcp.ngroups, ocb_start, jcp.nb_oc); for (int img = img_start; img < img_end; ++img) { int g = g_start, ocb = ocb_start; for (int b_job_loc = 0; b_job_loc < b_njobs; ++b_job_loc) { const size_t _oc = g * jcp.nb_oc + ocb; const data_t *d_dst = &diff_dst[diff_dst_d.blk_off(img, _oc)]; data_t *d_bias = rb->get_local_ptr(ithr, diff_bias, reducer_bia_scratchpad) + b_job_loc * rb->balancer().job_size_; if (img == img_start) for (int o = 0; o < 8; ++o) d_bias[o] = 0.; for (int dhw = 0; dhw < jcp.od * jcp.oh * jcp.ow; ++dhw) { PRAGMA_OMP_SIMD() for (int o = 0; o < 8; ++o) d_bias[o] += d_dst[o]; d_dst += 8; } nd_iterator_step(g, jcp.ngroups, ocb, jcp.nb_oc); } } rb->reduce(ithr, diff_bias, reducer_bia_scratchpad); }; parallel(0, [&](const int ithr, const int nthr) { ker(ithr, nthr); if (pd()->with_bias()) ker_bias(ithr, nthr); }); /* TODO: put this in ker_bias */ if (pd()->wants_padded_bias()) { assert(jcp.ngroups == 1); for (int oc = 0; oc < jcp.oc_without_padding; ++oc) diff_bias_in[oc] = diff_bias[oc]; } } } } } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s