/******************************************************************************* * Copyright 2017-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #ifndef GEMM_X8S8S32X_CONVOLUTION_HPP #define GEMM_X8S8S32X_CONVOLUTION_HPP #include "c_types_map.hpp" #include "memory_tracking.hpp" #include "cpu_convolution_pd.hpp" #include "cpu_primitive.hpp" #include "jit_primitive_conf.hpp" #include "jit_generator.hpp" #include "gemm_convolution_utils.hpp" #include "gemm/gemm.hpp" namespace mkldnn { namespace impl { namespace cpu { template struct _gemm_x8s8s32x_convolution_fwd_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_fwd_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const typename pd_t::base_class *hint_fwd_pd) : cpu_convolution_fwd_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T(IGEMM_S8U8S32_IMPL_STR, _gemm_x8s8s32x_convolution_fwd_t); status_t init() { using namespace data_type; bool ok = true && is_fwd() && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(src_type, s8, data_type::undef, dst_type, s32) && IMPLICATION(with_bias(), utils::one_of( desc()->bias_desc.data_type, f32, s32, s8, u8)) && !has_zero_dim_memory() && set_default_formats_common( dat_tag(), format_tag::any, dat_tag()) && post_ops_ok() && memory_desc_matches_tag(*src_md(), dat_tag()) && memory_desc_matches_tag(*dst_md(), dat_tag()) && set_or_check_wei_format(); if (!ok) return status::unimplemented; auto scratchpad = scratchpad_registry().registrar(); return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad, *desc(), src_md(), weights_md(0), dst_md(), mkldnn_get_max_threads()); } jit_gemm_conv_conf_t jcp_; protected: format_tag_t dat_tag() const { return format_tag::nhwc; } bool set_or_check_wei_format() { using namespace format_tag; const bool is_src_s8 = src_md_.data_type == data_type::s8; memory_desc_t want_wei_md = weights_md_; memory_desc_init_by_tag(want_wei_md, with_groups() ? hwigo : hwio); if (is_src_s8) { want_wei_md.extra.flags = 0 | memory_extra_flags::compensation_conv_s8s8 | memory_extra_flags::scale_adjust; want_wei_md.extra.compensation_mask = (1 << 0) + (with_groups() ? (1 << 1) : 0); want_wei_md.extra.scale_adjust = mayiuse(avx512_core_vnni) ? 1.f : 0.5f; } if (weights_md_.format_kind == format_kind::any) { weights_md_ = want_wei_md; return true; } return weights_md_ == want_wei_md; } bool post_ops_ok() const { using namespace mkldnn::impl::primitive_kind; auto const &po = attr()->post_ops_; auto is_relu = [&](int idx) { return po.entry_[idx].is_relu(true, false); }; switch (po.len_) { case 0: return true; case 1: return is_relu(0) || po.contain(sum, 0); case 2: return po.contain(sum, 0) && is_relu(1); default: return false; } return false; } }; _gemm_x8s8s32x_convolution_fwd_t(const pd_t *apd) : cpu_primitive_t(apd, true), pp_ker_(nullptr) { pp_ker_ = new pp_ker_t(pd()); } ~_gemm_x8s8s32x_convolution_fwd_t() { delete pp_ker_; } typedef typename prec_traits::type src_data_t; typedef typename prec_traits::type wei_data_t; typedef typename prec_traits::type dst_data_t; typedef typename prec_traits::type acc_data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_forward(ctx); return status::success; } private: // XXX: this is throwaway code that will become unnecessary when we have a // sufficiently advanced igemm jit generator that supports quantization, // relu, and whatnot class pp_ker_t : jit_generator { public: DECLARE_CPU_JIT_AUX_FUNCTIONS( _gemm_x8s8s32x_convolution_fwd_t::pp_kernel); pp_ker_t(const pd_t *pd); void operator()(dst_data_t *dst, const acc_data_t *acc, const char *bias, const float *scales, float nslope, float sum_scale, float signed_scale, int g, size_t start, size_t end); size_t dst_os_stride_; private: void generate(); struct ker_args { dst_data_t *dst; const acc_data_t *acc; const char *bias; const float *scales; float nslope; float sum_scale; float signed_scale; size_t len; size_t oc_offset; }; void(*ker_)(const ker_args *args); const jit_gemm_conv_conf_t &jcp_; size_t OC_; size_t OS_; data_type_t bias_data_type_; size_t bias_data_type_size_; size_t scale_idx_mult_; bool do_bias_; bool do_relu_; bool do_sum_; bool do_signed_scaling_; size_t vlen_; }; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } void execute_forward(const exec_ctx_t &ctx) const; void execute_forward_thr(const int ithr, const int nthr, const src_data_t *src_base, const wei_data_t *wei_base, const char *bia_base, dst_data_t *dst_base, const memory_tracking::grantor_t &scratchpad) const; int nthr_; pp_ker_t *pp_ker_; }; template struct _gemm_u8s8s32x_convolution_bwd_data_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_bwd_data_pd_t{ pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const convolution_fwd_pd_t *hint_fwd_pd) : cpu_convolution_bwd_data_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T(IGEMM_S8U8S32_IMPL_STR, _gemm_u8s8s32x_convolution_bwd_data_t); status_t init() { using namespace data_type; bool ok = true && desc()->prop_kind == prop_kind::backward_data && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(dst_type, s8, data_type::undef, u8, s32) && IMPLICATION(with_bias(), utils::one_of( desc()->bias_desc.data_type, f32, s32, s8, u8)) && !has_zero_dim_memory() && set_default_formats_common(dat_tag(), wei_tag(), dat_tag()) && attr()->post_ops_.has_default_values() && memory_desc_matches_tag(*diff_src_md(), dat_tag()) && memory_desc_matches_tag(*diff_dst_md(), dat_tag()) && memory_desc_matches_tag(*weights_md(), wei_tag()); if (!ok) return status::unimplemented; auto scratchpad = scratchpad_registry().registrar(); return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad, *desc(), diff_src_md(), weights_md(), diff_dst_md(), mkldnn_get_max_threads()); } virtual bool support_bias() const override { return true; } jit_gemm_conv_conf_t jcp_; protected: format_tag_t dat_tag() const { return format_tag::nhwc; } format_tag_t wei_tag() const { return with_groups() ? format_tag::hwigo : format_tag::hwio; } }; _gemm_u8s8s32x_convolution_bwd_data_t(const pd_t *apd) : cpu_primitive_t(apd, true) {} typedef typename prec_traits::type diff_dst_data_t; typedef typename prec_traits::type wei_data_t; typedef typename prec_traits::type diff_src_data_t; typedef typename prec_traits::type acc_data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_backward_data(ctx); return status::success; } private: void execute_backward_data(const exec_ctx_t &ctx) const; void execute_backward_data_thr(const int ithr, const int nthr, const diff_dst_data_t *diff_dst_base, const wei_data_t *wei_base, const char *bia_base, diff_src_data_t *diff_src_base, const memory_tracking::grantor_t &scratchpad) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } }; } } } #endif