/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #ifndef CPU_JIT_GEMM_CONVOLUTION_HPP #define CPU_JIT_GEMM_CONVOLUTION_HPP #include "c_types_map.hpp" #include "memory_tracking.hpp" #include "gemm_convolution_utils.hpp" #include "gemm/gemm.hpp" #include "ref_eltwise.hpp" #include "cpu_convolution_pd.hpp" namespace mkldnn { namespace impl { namespace cpu { struct gemm_convolution_fwd_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_fwd_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const typename pd_t::base_class *hint_fwd_pd) : cpu_convolution_fwd_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T(GEMM_IMPL_STR, gemm_convolution_fwd_t); status_t init() { bool ok = true && is_fwd() && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(data_type::f32, data_type::f32, data_type::f32, data_type::f32, data_type::f32) && !has_zero_dim_memory() && set_default_formats_common(dat_tag(), wei_tag(), dat_tag()) && post_ops_ok() && memory_desc_matches_tag(*src_md(), dat_tag()) && memory_desc_matches_tag(*dst_md(), dat_tag()) && memory_desc_matches_tag(*weights_md(), wei_tag()); if (!ok) return status::unimplemented; auto scratchpad = scratchpad_registry().registrar(); return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad, *desc(), src_md(), weights_md(0), dst_md(), mkldnn_get_max_threads()); } jit_gemm_conv_conf_t jcp_; protected: format_tag_t dat_tag() const { using namespace format_tag; return utils::pick(ndims() - 3, ncw, nchw, ncdhw); } format_tag_t wei_tag() const { using namespace format_tag; return with_groups() ? utils::pick(ndims() - 3, goiw, goihw, goidhw) : utils::pick(ndims() - 3, oiw, oihw, oidhw); } bool post_ops_ok() const { auto const &po = attr()->post_ops_; auto is_eltwise = [&](int idx) { return po.entry_[idx].is_eltwise(); }; auto is_sum = [&](int idx) { return po.entry_[idx].is_sum(); }; switch (po.len_) { case 0: return true; // no post_ops case 1: return is_eltwise(0) || is_sum(0); // sum OR eltwise case 2: return is_sum(0) && is_eltwise(1); // sum -> eltwise default: return false; } return false; } }; gemm_convolution_fwd_t(const pd_t *apd) : cpu_primitive_t(apd, true) , eltwise_(nullptr) { const auto &post_ops = pd()->attr()->post_ops_; const data_t one = 1.0, zero = 0.0; beta_ = post_ops.find(primitive_kind::sum) >= 0 ? one : zero; const int entry_idx = post_ops.find(primitive_kind::eltwise); if (entry_idx != -1) eltwise_ = new ref_eltwise_scalar_fwd_t( post_ops.entry_[entry_idx].eltwise); } ~gemm_convolution_fwd_t() { delete eltwise_; } typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_forward(ctx); return status::success; } private: void execute_forward(const exec_ctx_t &ctx) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } data_t beta_; ref_eltwise_scalar_fwd_t* eltwise_; }; struct gemm_convolution_bwd_data_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_bwd_data_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const convolution_fwd_pd_t *hint_fwd_pd) : cpu_convolution_bwd_data_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T(GEMM_IMPL_STR, gemm_convolution_bwd_data_t); status_t init() { bool ok = true && desc()->prop_kind == prop_kind::backward_data && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(data_type::f32, data_type::f32, data_type::undef, data_type::f32, data_type::f32) && !has_zero_dim_memory() && set_default_formats_common(dat_tag(), wei_tag(), dat_tag()) && memory_desc_matches_tag(*diff_src_md(), dat_tag()) && memory_desc_matches_tag(*diff_dst_md(), dat_tag()) && memory_desc_matches_tag(*weights_md(), wei_tag()); if (!ok) return status::unimplemented; auto scratchpad = scratchpad_registry().registrar(); return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad, *desc(), diff_src_md(), weights_md(0), diff_dst_md(), mkldnn_get_max_threads()); } jit_gemm_conv_conf_t jcp_; protected: format_tag_t dat_tag() const { using namespace format_tag; return utils::pick(ndims() - 3, ncw, nchw, ncdhw); } format_tag_t wei_tag() const { using namespace format_tag; return with_groups() ? utils::pick(ndims() - 3, goiw, goihw, goidhw) : utils::pick(ndims() - 3, oiw, oihw, oidhw); } }; gemm_convolution_bwd_data_t(const pd_t *apd) : cpu_primitive_t(apd, true) {} typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_backward_data(ctx); return status::success; } private: void execute_backward_data(const exec_ctx_t &ctx) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } }; struct gemm_convolution_bwd_weights_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_bwd_weights_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const convolution_fwd_pd_t *hint_fwd_pd) : cpu_convolution_bwd_weights_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T(GEMM_IMPL_STR, gemm_convolution_bwd_weights_t); status_t init() { bool ok = true && desc()->prop_kind == prop_kind::backward_weights && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(data_type::f32, data_type::f32, data_type::f32, data_type::f32, data_type::f32) && !has_zero_dim_memory() && set_default_formats_common(dat_tag(), wei_tag(), dat_tag()) && memory_desc_matches_tag(*src_md(), dat_tag()) && memory_desc_matches_tag(*diff_dst_md(), dat_tag()) && memory_desc_matches_tag(*diff_weights_md(), wei_tag()); if (!ok) return status::unimplemented; auto scratchpad = scratchpad_registry().registrar(); return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad, *desc(), src_md(), diff_weights_md(0), diff_dst_md(), mkldnn_get_max_threads()); } jit_gemm_conv_conf_t jcp_; protected: format_tag_t dat_tag() const { using namespace format_tag; return utils::pick(ndims() - 3, ncw, nchw, ncdhw); } format_tag_t wei_tag() const { using namespace format_tag; return with_groups() ? utils::pick(ndims() - 3, goiw, goihw, goidhw) : utils::pick(ndims() - 3, oiw, oihw, oidhw); } }; gemm_convolution_bwd_weights_t(const pd_t *apd) : cpu_primitive_t(apd, true) {} typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_backward_weights(ctx); return status::success; } private: void execute_backward_weights(const exec_ctx_t &ctx) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } }; } } } #endif