/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include "mkldnn_types.h" #include "c_types_map.hpp" #include "gemm_convolution.hpp" #include "utils.hpp" #include "type_helpers.hpp" #include "mkldnn_thread.hpp" #include "ref_eltwise.hpp" namespace mkldnn { namespace impl { namespace cpu { using namespace mkldnn::impl::status; using namespace mkldnn::impl::memory_tracking::names; using namespace mkldnn::impl::utils; void gemm_convolution_fwd_t::execute_forward(const exec_ctx_t &ctx) const { auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); auto col = scratchpad(ctx).get(key_conv_gemm_col); const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_; const int M = jcp.os * jcp.od; const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id; const size_t dst_step = jcp.oc * M; const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks; assert(IMPLICATION( jcp.id != 1, jcp.oh_block == jcp.oh && jcp.ow_block == jcp.ow)); assert(IMPLICATION(jcp.ow_block != jcp.ow, jcp.oh_block == 1)); const int K = jcp.ic * jcp.ks; const int N = jcp.oc; if (jcp.im2col_sz && jcp.id != 1) parallel_nd(jcp.im2col_sz * jcp.nthr, [&](ptrdiff_t i) { col[i] = (data_t)0; }); const int nb_oh = div_up(jcp.oh, jcp.oh_block); const int nb_ow = div_up(jcp.ow, jcp.ow_block); const size_t work_amount = jcp.ngroups * jcp.mb * jcp.od * nb_oh * nb_ow; parallel(jcp.nthr, [&](const int ithr, const int nthr) { data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz; int g{ 0 }, n{ 0 }, od{ 0 }, ohb{ 0 }, owb{ 0 }; size_t start = 0, end = 0; balance211(work_amount, nthr, ithr, start, end); nd_iterator_init(start, g, jcp.ngroups, n, jcp.mb, od, jcp.od, ohb, nb_oh, owb, nb_ow); for (size_t iwork = start; iwork < end; ++iwork) { int oh = ohb * jcp.oh_block; int ow = owb * jcp.ow_block; const data_t *_src = src + (n * jcp.ngroups + g) * src_step; const data_t *_weights = weights + g * weights_g_size; data_t *_dst_im = dst + (n * jcp.ngroups + g) * dst_step; const int h_step = nstl::min(jcp.oh_block, jcp.oh - oh); const int w_step = nstl::min(jcp.ow_block, jcp.ow - ow); if (jcp.im2col_sz) { if (jcp.id == 1) jit_gemm_convolution_utils::im2col( jcp, _src, _col, oh, h_step, ow, w_step); else jit_gemm_convolution_utils::im2col_3d(jcp, _src, _col, od); } const data_t one = 1.0; const int m = h_step * w_step; const int LDA = jcp.im2col_sz ? m : M; data_t *_dst = _dst_im + od * jcp.os + oh * jcp.ow + ow; extended_sgemm("N", "N", &m, &N, &K, &one, jcp.im2col_sz ? _col : _src + od * m, &LDA, _weights, &K, &this->beta_, _dst, &M); data_t *d = _dst; if (eltwise_) { // fast branch for ReLU case if (eltwise_->alg_ == alg_kind::eltwise_relu) { parallel_nd(jcp.oc, [&](const int oc) { data_t b = jcp.with_bias ? bias[g * jcp.oc + oc] : 0; data_t *d_ = d + oc * M; PRAGMA_OMP_SIMD() for (int oS = 0; oS < m; ++oS) { d_[oS] += b; if (d_[oS] < 0) d_[oS] *= eltwise_->alpha_; } }); } else { parallel_nd(jcp.oc, [&](const int oc) { data_t b = jcp.with_bias ? bias[g * jcp.oc + oc] : 0; data_t *d_ = d + oc * M; PRAGMA_OMP_SIMD() for (int oS = 0; oS < m; ++oS) { d_[oS] += b; d_[oS] = eltwise_->compute_scalar(d_[oS]); } }); } } else if (jcp.with_bias) { parallel_nd(jcp.oc, [&](const int oc) { data_t b = bias[g * jcp.oc + oc]; data_t *d_ = d + oc * M; PRAGMA_OMP_SIMD() for (int oS = 0; oS < m; ++oS) { d_[oS] += b; } }); } nd_iterator_step(g, jcp.ngroups, n, jcp.mb, od, jcp.od, ohb, nb_oh, owb, nb_ow); } }); } void gemm_convolution_bwd_data_t::execute_backward_data( const exec_ctx_t &ctx) const { auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); auto col = scratchpad(ctx).get(key_conv_gemm_col); const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_; const int M = jcp.os * jcp.od; const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id; const size_t dst_step = jcp.oc * M; const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks; const int m = jcp.os; const int K = jcp.oc; const int N = jcp.ic * jcp.ks; const int LDC = jcp.im2col_sz ? m : M; const size_t work_amount = (size_t)jcp.ngroups * jcp.mb; if (jcp.id > 1) { const ptrdiff_t diff_src_sz = (ptrdiff_t)(work_amount * src_step); parallel_nd(diff_src_sz, [&](ptrdiff_t i) { diff_src[i] = (data_t)0; }); } parallel(jcp.nthr, [&](const int ithr, const int nthr) { data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz; int g{0}, n{0}; size_t start = 0, end = 0; balance211(work_amount, nthr, ithr, start, end); nd_iterator_init(start, g, jcp.ngroups, n, jcp.mb); for (size_t iwork = start; iwork < end; ++iwork) { data_t *_diff_src = diff_src + (n * jcp.ngroups + g)*src_step; const data_t *_weights = weights + g * weights_g_size; for (int od = 0; od < jcp.od; ++od) { const data_t *_diff_dst = diff_dst + (n * jcp.ngroups + g) *dst_step + od * m; const data_t zero = 0.0, one = 1.0; extended_sgemm("N", "T", &m, &N, &K, &one, _diff_dst, &M, _weights, &N, &zero, jcp.im2col_sz ? _col:_diff_src + od * m, &LDC); if (jcp.im2col_sz) { if (jcp.id == 1) jit_gemm_convolution_utils::col2im(jcp, _col, _diff_src); else jit_gemm_convolution_utils::col2im_3d(jcp, _col, _diff_src, od); } } nd_iterator_step(g, jcp.ngroups, n, jcp.mb); } }); } void gemm_convolution_bwd_weights_t::execute_backward_weights( const exec_ctx_t &ctx) const { auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS); auto diff_bias = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS); auto col = scratchpad(ctx).get(key_conv_gemm_col); auto wei_reduction = scratchpad(ctx).get(key_conv_wei_reduction); const jit_gemm_conv_conf_t &jcp = this->pd()->jcp_; const int K = jcp.os * jcp.od; const size_t src_step = jcp.ic * jcp.ih * jcp.iw * jcp.id; const size_t dst_step = jcp.oc * K; const size_t weights_g_size = jcp.ic * jcp.oc * jcp.ks; const int k = jcp.os; const int N = jcp.oc; const int M = jcp.ic * jcp.ks; const int LDA = jcp.im2col_sz ? k : K; parallel_nd(jcp.im2col_sz * jcp.nthr, [&](ptrdiff_t i) { col[i] = (data_t)0; }); parallel(jcp.nthr, [&](const int ithr, const int nthr) { int ithr_g, nthr_g, ithr_mb, nthr_mb; size_t g_start{0}, g_end{0}, mb_start{0}, mb_end{0}; const int mb_for_balance = jcp.need_wei_reduction ? jcp.mb : 1; jit_gemm_convolution_utils::bwd_weights_balance(ithr, nthr, jcp.ngroups, mb_for_balance, ithr_g, nthr_g, ithr_mb, nthr_mb); assert(IMPLICATION(!jcp.need_wei_reduction, nthr_mb == 1)); const int need_reduction = nthr_mb != 1; if (ithr_g != -1 && ithr_mb != -1) { balance211((size_t)jcp.ngroups, nthr_g, ithr_g, g_start, g_end); balance211((size_t)jcp.mb, nthr_mb, ithr_mb, mb_start, mb_end); assert(IMPLICATION((g_end - g_start) > 1, need_reduction == 0)); data_t *_col = col + (ptrdiff_t)ithr * jcp.im2col_sz; data_t *weights_reduce_base = wei_reduction + ithr_g * nthr_mb * weights_g_size; data_t *weights_reduce = weights_reduce_base + ithr_mb * weights_g_size; for (size_t g = g_start; g < g_end; ++g) { data_t *_diff_weights = need_reduction ? weights_reduce : (diff_weights + g * weights_g_size); for (size_t mb = mb_start; mb < mb_end; ++mb) { const data_t *_src = src + (mb*jcp.ngroups+g)*src_step; for (int od = 0; od < jcp.od; ++od) { const data_t *_diff_dst = diff_dst + (mb*jcp.ngroups+g)*dst_step + od * k; if (jcp.im2col_sz) { if (jcp.id == 1) jit_gemm_convolution_utils::im2col( jcp, _src, _col, 0, jcp.oh, 0, jcp.ow); else jit_gemm_convolution_utils::im2col_3d(jcp, _src, _col, od); } const data_t zero = 0.0, one = 1.0; extended_sgemm( "T", "N", &M, &N, &k, &one, jcp.im2col_sz ? _col : _src + od * k, &LDA, _diff_dst, &K, mb == mb_start && od == 0 ? &zero : &one, _diff_weights, &M); } } } if (need_reduction) { mkldnn_thr_barrier(); data_t *weights_base = diff_weights + g_start * weights_g_size; jit_gemm_convolution_utils::bwd_weights_reduction_par( ithr_mb, nthr_mb, jcp, weights_reduce_base, weights_base); } } else if (need_reduction) { mkldnn_thr_barrier(); } }); if (jcp.with_bias) { parallel_nd(jcp.ngroups, jcp.oc, [&](int g, int oc) { data_t db = 0; size_t offset_ = (size_t)g * dst_step + (size_t)oc * K; for (int mb = 0; mb < jcp.mb; ++mb) { size_t offset = offset_ + (size_t)mb * jcp.ngroups * dst_step; for (int od = 0; od < jcp.od; ++od) for (int oh = 0; oh < jcp.oh; ++oh) PRAGMA_OMP_SIMD(reduction(+:db)) for (int ow = 0; ow < jcp.ow; ++ow) { db += diff_dst[offset]; offset++; } } diff_bias[g*jcp.oc+oc] = db; }); } } } } }