/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #ifndef UTILS_HPP #define UTILS_HPP #include #include #include #include #include #if defined(__x86_64__) || defined(_M_X64) #define MKLDNN_X86_64 #endif #define MSAN_ENABLED 0 #if defined(__has_feature) #if __has_feature(memory_sanitizer) #undef MSAN_ENABLED #define MSAN_ENABLED 1 #include #endif #endif #include "c_types_map.hpp" #include "nstl.hpp" #include "z_magic.hpp" namespace mkldnn { namespace impl { // Sanity check for 64 bits static_assert(sizeof(void*) == 8, "Intel(R) MKL-DNN supports 64 bit only"); #define CHECK(f) do { \ status_t status = f; \ if (status != status::success) \ return status; \ } while (0) #define IMPLICATION(cause, effect) (!(cause) || !!(effect)) namespace utils { /* a bunch of std:: analogues to be compliant with any msvs version * * Rationale: msvs c++ (and even some c) headers contain special pragma that * injects msvs-version check into object files in order to abi-mismatches * during the static linking. This makes sense if e.g. std:: objects are passed * through between application and library, which is not the case for mkl-dnn * (since there is no any c++-rt dependent stuff, ideally...). */ /* SFINAE helper -- analogue to std::enable_if */ template struct enable_if {}; template struct enable_if { typedef T type; }; /* analogue std::conditional */ template struct conditional {}; template struct conditional { typedef T type; }; template struct conditional { typedef F type; }; template struct conditional3 {}; template struct conditional3 { typedef T type; }; template struct conditional3 { typedef FT type; }; template struct conditional3 { typedef FF type; }; template struct conditional_v {}; template struct conditional_v { static constexpr U value = t; }; template struct conditional_v { static constexpr U value = f; }; template struct remove_reference { typedef T type; }; template struct remove_reference { typedef T type; }; template struct remove_reference { typedef T type; }; template inline T&& forward(typename utils::remove_reference::type &t) { return static_cast(t); } template inline T&& forward(typename utils::remove_reference::type &&t) { return static_cast(t); } template inline typename remove_reference::type zero() { auto zero = typename remove_reference::type(); return zero; } template inline bool everyone_is(T val, P item) { return val == item; } template inline bool everyone_is(T val, P item, Args... item_others) { return val == item && everyone_is(val, item_others...); } template constexpr bool one_of(T val, P item) { return val == item; } template constexpr bool one_of(T val, P item, Args... item_others) { return val == item || one_of(val, item_others...); } template inline bool any_null(Args... ptrs) { return one_of(nullptr, ptrs...); } template inline void array_copy(T *dst, const T *src, size_t size) { for (size_t i = 0; i < size; ++i) dst[i] = src[i]; } template inline bool array_cmp(const T *a1, const T *a2, size_t size) { for (size_t i = 0; i < size; ++i) if (a1[i] != a2[i]) return false; return true; } template inline void array_set(T *arr, const U& val, size_t size) { for (size_t i = 0; i < size; ++i) arr[i] = static_cast(val); } namespace product_impl { template struct int2type{}; template constexpr int product_impl(const T *arr, int2type<0>) { return arr[0]; } template inline T product_impl(const T *arr, int2type) { return arr[0]*product_impl(arr+1, int2type()); } } template inline T array_product(const T *arr) { return product_impl::product_impl(arr, product_impl::int2type()); } template inline R array_product(const T *arr, size_t size) { R prod = 1; for (size_t i = 0; i < size; ++i) prod *= arr[i]; return prod; } /** sorts an array of values using @p comparator. While sorting the array * of value, the function permutes an array of @p keys accordingly. * * @note The arrays of @p keys can be omitted. In this case the function * sorts the array of @vals only. */ template inline void simultaneous_sort(T *vals, U *keys, size_t size, F comparator) { if (size == 0) return; for (size_t i = 0; i < size - 1; ++i) { bool swapped = false; for (size_t j = 0; j < size - i - 1; j++) { if (comparator(vals[j], vals[j + 1]) > 0) { nstl::swap(vals[j], vals[j + 1]); if (keys) nstl::swap(keys[j], keys[j + 1]); swapped = true; } } if (swapped == false) break; } } template inline typename remove_reference::type div_up(const T a, const U b) { assert(b); return (a + b - 1) / b; } template inline typename remove_reference::type rnd_up(const T a, const U b) { return div_up(a, b) * b; } template inline typename remove_reference::type rnd_dn(const T a, const U b) { return (a / b) * b; } template T *align_ptr(T *ptr, uintptr_t alignment) { return (T *)(((uintptr_t)ptr + alignment - 1) & ~(alignment - 1)); } template inline U this_block_size(const T offset, const U max, const V block_size) { assert(offset < max); // TODO (Roma): can't use nstl::max() due to circular dependency... we // need to fix this const T block_boundary = offset + block_size; if (block_boundary > max) return max - offset; else return block_size; } template inline T nd_iterator_init(T start) { return start; } template inline T nd_iterator_init(T start, U &x, const W &X, Args &&... tuple) { start = nd_iterator_init(start, utils::forward(tuple)...); x = start % X; return start / X; } inline bool nd_iterator_step() { return true; } template inline bool nd_iterator_step(U &x, const W &X, Args &&... tuple) { if (nd_iterator_step(utils::forward(tuple)...) ) { x = (x + 1) % X; return x == 0; } return false; } template inline bool nd_iterator_jump(U &cur, const U end, W &x, const Y &X) { U max_jump = end - cur; U dim_jump = X - x; if (dim_jump <= max_jump) { x = 0; cur += dim_jump; return true; } else { cur += max_jump; x += max_jump; return false; } } template inline bool nd_iterator_jump(U &cur, const U end, W &x, const Y &X, Args &&... tuple) { if (nd_iterator_jump(cur, end, utils::forward(tuple)...)) { x = (x + 1) % X; return x == 0; } return false; } template inline T pick(size_t i, const T &x0) { return x0; } template inline T pick(size_t i, const T &x0, Args &&... args) { return i == 0 ? x0 : pick(i - 1, utils::forward(args)...); } template T pick_by_prop_kind(prop_kind_t prop_kind, const T &val_fwd_inference, const T &val_fwd_training, const T &val_bwd_d, const T &val_bwd_w) { switch (prop_kind) { case prop_kind::forward_inference: return val_fwd_inference; case prop_kind::forward_training: return val_fwd_training; case prop_kind::backward_data: return val_bwd_d; case prop_kind::backward_weights: return val_bwd_w; default: assert(!"unsupported prop_kind"); } return T(); } template T pick_by_prop_kind(prop_kind_t prop_kind, const T &val_fwd, const T &val_bwd_d, const T &val_bwd_w) { return pick_by_prop_kind(prop_kind, val_fwd, val_fwd, val_bwd_d, val_bwd_w); } template struct array_offset_calculator { template array_offset_calculator(Telem *base, Targs... Fargs) : _dims{ Fargs... } { _base_ptr = base; } template inline Telem &operator()(Targs... Fargs) { return *(_base_ptr + _offset(1, Fargs...)); } private: template inline size_t _offset(size_t const dimension, size_t element) { return element; } template inline size_t _offset(size_t const dimension, size_t theta, size_t element) { return element + (_dims[dimension] * theta); } template inline size_t _offset(size_t const dimension, size_t theta, size_t element, Targs... Fargs) { size_t t_prime = element + (_dims[dimension] * theta); return _offset(dimension + 1, t_prime, Fargs...); } Telem *_base_ptr; const int _dims[Tdims]; }; } int32_t fetch_and_add(int32_t *dst, int32_t val); inline void yield_thread() {} // Reads an environment variable 'name' and stores its string value in the // 'buffer' of 'buffer_size' bytes on success. // // - Returns the length of the environment variable string value (excluding // the terminating 0) if it is set and its contents (including the terminating // 0) can be stored in the 'buffer' without truncation. // // - Returns negated length of environment variable string value and writes // "\0" to the buffer (if it is not NULL) if the 'buffer_size' is to small to // store the value (including the terminating 0) without truncation. // // - Returns 0 and writes "\0" to the buffer (if not NULL) if the environment // variable is not set. // // - Returns INT_MIN if the 'name' is NULL. // // - Returns INT_MIN if the 'buffer_size' is negative. // // - Returns INT_MIN if the 'buffer' is NULL and 'buffer_size' is greater than // zero. Passing NULL 'buffer' with 'buffer_size' set to 0 can be used to // retrieve the length of the environment variable value string. // int getenv(const char *name, char *buffer, int buffer_size); // Reads an integer from the environment int getenv_int(const char *name, int default_value = 0); bool jit_dump_enabled(); FILE *fopen(const char *filename, const char *mode); constexpr int msan_enabled = MSAN_ENABLED; inline void msan_unpoison(void *ptr, size_t size) { #if MSAN_ENABLED __msan_unpoison(ptr, size); #endif } } } #endif // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s