/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include "mkldnn.h" #include "c_types_map.hpp" #include "type_helpers.hpp" #include "utils.hpp" using namespace mkldnn::impl; using namespace mkldnn::impl::utils; using namespace mkldnn::impl::status; using namespace mkldnn::impl::prop_kind; using namespace mkldnn::impl::alg_kind; using namespace mkldnn::impl::types; namespace mkldnn { namespace impl { status_t conv_desc_init(convolution_desc_t *conv_desc, prop_kind_t prop_kind, alg_kind_t alg_kind, const memory_desc_t *src_desc, const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, const dims_t strides, const dims_t dilates, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { bool args_ok = true && !any_null(conv_desc, src_desc, weights_desc, dst_desc, strides, padding_l) && one_of(alg_kind, convolution_auto, convolution_direct, convolution_winograd) && one_of(padding_kind, padding_kind::padding_zero); if (!args_ok) return invalid_arguments; if (padding_r == nullptr) padding_r = padding_l; auto cd = convolution_desc_t(); cd.primitive_kind = primitive_kind::convolution; cd.prop_kind = prop_kind; cd.alg_kind = alg_kind; cd.diff_src_desc = cd.src_desc = zero_md(); cd.diff_dst_desc = cd.dst_desc = zero_md(); cd.diff_weights_desc = cd.weights_desc = zero_md(); cd.diff_bias_desc = cd.bias_desc = zero_md(); const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); const bool with_bias = bias_desc && bias_desc->format_kind != format_kind::undef; const bool with_groups = weights_desc->ndims == src_desc->ndims + 1; (prop_kind == backward_data ? cd.diff_src_desc : cd.src_desc) = *src_desc; (is_fwd ? cd.dst_desc : cd.diff_dst_desc) = *dst_desc; (prop_kind == backward_weights ? cd.diff_weights_desc : cd.weights_desc) = *weights_desc; if (with_bias) (prop_kind == backward_weights ? cd.diff_bias_desc : cd.bias_desc) = *bias_desc; int sp_dims = src_desc->ndims - 2; utils::array_copy(cd.strides, strides, sp_dims); utils::array_copy(cd.padding[0], padding_l, sp_dims); utils::array_copy(cd.padding[1], padding_r, sp_dims); if (dilates) utils::array_copy(cd.dilates, dilates, sp_dims); else utils::array_set(cd.dilates, 0, sp_dims); cd.padding_kind = padding_kind; cd.accum_data_type = types::default_accum_data_type(src_desc->data_type, weights_desc->data_type, dst_desc->data_type, prop_kind); const int g = with_groups ? weights_desc->dims[0] : 1; const int bias_dim = prop_kind == backward_data ? src_desc->dims[1] : dst_desc->dims[1]; bool consistency = true && memory_desc_wrapper(weights_desc).nelems() && src_desc->ndims == dst_desc->ndims && utils::one_of(src_desc->ndims, 3, 4, 5) && utils::one_of(weights_desc->ndims, src_desc->ndims, src_desc->ndims + 1) && (with_bias ? bias_desc->ndims == 1 : true) && (with_bias ? bias_desc->dims[0] == bias_dim : true) && src_desc->dims[0] == dst_desc->dims[0] && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1] && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0]; for (int i = 2; i < src_desc->ndims; ++i) { int src = src_desc->dims[i]; int ker = weights_desc->dims[with_groups + i]; int dil = cd.dilates[i - 2]; int pad_l = padding_l[i - 2]; int pad_r = padding_r[i - 2]; int str = strides[i - 2]; int dst = dst_desc->dims[i]; int ker_range = 1 + (ker - 1) * (dil + 1); if (str < 1) return invalid_arguments; consistency = consistency && dil >= 0 && pad_l >= 0 && pad_r + str > 0 && (src - ker_range + pad_l + pad_r) / str + 1 == dst; } if (!consistency) return invalid_arguments; *conv_desc = cd; return success; } } } status_t mkldnn_convolution_forward_desc_init(convolution_desc_t *conv_desc, prop_kind_t prop_kind, alg_kind_t alg_kind, const memory_desc_t *src_desc, const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, const dims_t strides, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { if (!one_of(prop_kind, forward_training, forward_inference)) return invalid_arguments; return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc, weights_desc, bias_desc, dst_desc, strides, nullptr, padding_l, padding_r, padding_kind); } status_t mkldnn_dilated_convolution_forward_desc_init( convolution_desc_t *conv_desc, prop_kind_t prop_kind, alg_kind_t alg_kind, const memory_desc_t *src_desc, const memory_desc_t *weights_desc, const memory_desc_t *bias_desc, const memory_desc_t *dst_desc, const dims_t strides, const dims_t dilates, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { if (!one_of(prop_kind, forward_training, forward_inference)) return invalid_arguments; return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc, weights_desc, bias_desc, dst_desc, strides, dilates, padding_l, padding_r, padding_kind); } status_t mkldnn_convolution_backward_data_desc_init( convolution_desc_t *conv_desc, alg_kind_t alg_kind, const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, const memory_desc_t *diff_dst_desc, const dims_t strides, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc, weights_desc, nullptr, diff_dst_desc, strides, nullptr, padding_l, padding_r, padding_kind); } status_t mkldnn_dilated_convolution_backward_data_desc_init( convolution_desc_t *conv_desc, alg_kind_t alg_kind, const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc, const memory_desc_t *diff_dst_desc, const dims_t strides, const dims_t dilates, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc, weights_desc, nullptr, diff_dst_desc, strides, dilates, padding_l, padding_r, padding_kind); } status_t mkldnn_convolution_backward_weights_desc_init( convolution_desc_t *conv_desc, alg_kind_t alg_kind, const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc, const dims_t strides, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc, diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, nullptr, padding_l, padding_r, padding_kind); } status_t mkldnn_dilated_convolution_backward_weights_desc_init( convolution_desc_t *conv_desc, alg_kind_t alg_kind, const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc, const memory_desc_t *diff_bias_desc, const memory_desc_t *diff_dst_desc, const dims_t strides, const dims_t dilates, const dims_t padding_l, const dims_t padding_r, padding_kind_t padding_kind) { return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc, diff_weights_desc, diff_bias_desc, diff_dst_desc, strides, dilates, padding_l, padding_r, padding_kind); } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s