/******************************************************************************* * Copyright 2016-2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include "mkldnn.h" #include "c_types_map.hpp" #include "type_helpers.hpp" #include "utils.hpp" using namespace mkldnn::impl; using namespace mkldnn::impl::utils; using namespace mkldnn::impl::status; using namespace mkldnn::impl::prop_kind; using namespace mkldnn::impl::alg_kind; using namespace mkldnn::impl::types; namespace { status_t bnrm_desc_init(batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind, const memory_desc_t *data_desc, const memory_desc_t *diff_data_desc, float epsilon, unsigned flags) { bool args_ok = true && !any_null(bnrm_desc, data_desc) && one_of(prop_kind, forward_training, forward_inference, backward_data, backward) && IMPLICATION(prop_kind & backward, diff_data_desc != nullptr); if (!args_ok) return invalid_arguments; auto bd = batch_normalization_desc_t(); bd.primitive_kind = primitive_kind::batch_normalization; bd.prop_kind = prop_kind; bd.data_desc = *data_desc; bd.diff_data_desc = zero_md(); if ( one_of(bd.prop_kind,backward_data, backward) ) bd.diff_data_desc = *diff_data_desc; dims_t scaleshift_dims = { 2, data_desc->dims[1] }; mkldnn_memory_desc_init_by_tag(&bd.data_scaleshift_desc, 2, scaleshift_dims, data_type::f32, mkldnn_nc); bd.diff_data_scaleshift_desc = zero_md(); if (bd.prop_kind == backward) { bd.diff_data_scaleshift_desc = bd.data_scaleshift_desc; } dims_t stats_dims = { data_desc->dims[1] }; mkldnn_memory_desc_init_by_tag(&bd.mean_desc, 1, stats_dims, data_type::f32, mkldnn_x); bd.variance_desc = bd.mean_desc; bd.batch_norm_epsilon = epsilon; unsigned bnorm_flags = mkldnn_use_global_stats | mkldnn_use_scaleshift | mkldnn_fuse_bn_relu; if ((~bnorm_flags & flags) != 0) return invalid_arguments; bd.flags = flags; bool consistency = true && utils::one_of(bd.data_desc.ndims, 2, 4, 5); if (bd.prop_kind == backward_data) consistency = consistency && utils::one_of(bd.diff_data_desc.ndims, 2, 4, 5) && array_cmp(bd.diff_data_desc.dims, bd.data_desc.dims, bd.diff_data_desc.ndims); if (!consistency) return invalid_arguments; *bnrm_desc = bd; return success; } } status_t mkldnn_batch_normalization_forward_desc_init( batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind, const memory_desc_t *data_desc, float epsilon, unsigned flags) { if (!one_of(prop_kind, forward_training, forward_inference)) return invalid_arguments; return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, nullptr, epsilon, flags); } status_t mkldnn_batch_normalization_backward_desc_init( batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind, const memory_desc_t *diff_data_desc, const memory_desc_t *data_desc, float epsilon, unsigned flags) { if (!one_of(prop_kind, backward, backward_data)) return invalid_arguments; return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, diff_data_desc, epsilon, flags); } // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s