// ======================================================================== // // Copyright 2009-2019 Intel Corporation // // // // Licensed under the Apache License, Version 2.0 (the "License"); // // you may not use this file except in compliance with the License. // // You may obtain a copy of the License at // // // // http://www.apache.org/licenses/LICENSE-2.0 // // // // Unless required by applicable law or agreed to in writing, software // // distributed under the License is distributed on an "AS IS" BASIS, // // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // // See the License for the specific language governing permissions and // // limitations under the License. // // ======================================================================== // #include "autoencoder.h" namespace oidn { // -------------------------------------------------------------------------- // AutoencoderFilter // -------------------------------------------------------------------------- AutoencoderFilter::AutoencoderFilter(const Ref& device) : Filter(device) { } void AutoencoderFilter::setImage(const std::string& name, const Image& data) { if (name == "color") color = data; else if (name == "albedo") albedo = data; else if (name == "normal") normal = data; else if (name == "output") output = data; dirty = true; } void AutoencoderFilter::set1i(const std::string& name, int value) { if (name == "hdr") hdr = value; else if (name == "srgb") srgb = value; else if (name == "maxMemoryMB") maxMemoryMB = value; dirty = true; } int AutoencoderFilter::get1i(const std::string& name) { if (name == "hdr") return hdr; else if (name == "srgb") return srgb; else if (name == "maxMemoryMB") return maxMemoryMB; else if (name == "alignment") return alignment; else if (name == "overlap") return overlap; else throw Exception(Error::InvalidArgument, "invalid parameter"); } void AutoencoderFilter::set1f(const std::string& name, float value) { if (name == "hdrScale") hdrScale = value; dirty = true; } float AutoencoderFilter::get1f(const std::string& name) { if (name == "hdrScale") return hdrScale; else throw Exception(Error::InvalidArgument, "invalid parameter"); } void AutoencoderFilter::commit() { if (!dirty) return; // -- GODOT start -- //device->executeTask([&]() //{ // GODOT end -- if (mayiuse(avx512_common)) net = buildNet<16>(); else net = buildNet<8>(); // GODOT start -- //}); // GODOT end -- dirty = false; } void AutoencoderFilter::execute() { if (dirty) throw Exception(Error::InvalidOperation, "changes to the filter are not committed"); if (!net) return; // -- GODOT start -- //device->executeTask([&]() //{ // -- GODOT end -- Progress progress; progress.func = progressFunc; progress.userPtr = progressUserPtr; progress.taskCount = tileCountH * tileCountW; // Iterate over the tiles int tileIndex = 0; for (int i = 0; i < tileCountH; ++i) { const int h = i * (tileH - 2*overlap); // input tile position (including overlap) const int overlapBeginH = i > 0 ? overlap : 0; // overlap on the top const int overlapEndH = i < tileCountH-1 ? overlap : 0; // overlap on the bottom const int tileH1 = min(H - h, tileH); // input tile size (including overlap) const int tileH2 = tileH1 - overlapBeginH - overlapEndH; // output tile size const int alignOffsetH = tileH - roundUp(tileH1, alignment); // align to the bottom in the tile buffer for (int j = 0; j < tileCountW; ++j) { const int w = j * (tileW - 2*overlap); // input tile position (including overlap) const int overlapBeginW = j > 0 ? overlap : 0; // overlap on the left const int overlapEndW = j < tileCountW-1 ? overlap : 0; // overlap on the right const int tileW1 = min(W - w, tileW); // input tile size (including overlap) const int tileW2 = tileW1 - overlapBeginW - overlapEndW; // output tile size const int alignOffsetW = tileW - roundUp(tileW1, alignment); // align to the right in the tile buffer // Set the input tile inputReorder->setTile(h, w, alignOffsetH, alignOffsetW, tileH1, tileW1); // Set the output tile outputReorder->setTile(alignOffsetH + overlapBeginH, alignOffsetW + overlapBeginW, h + overlapBeginH, w + overlapBeginW, tileH2, tileW2); //printf("Tile: %d %d -> %d %d\n", w+overlapBeginW, h+overlapBeginH, w+overlapBeginW+tileW2, h+overlapBeginH+tileH2); // Denoise the tile net->execute(progress, tileIndex); // Next tile tileIndex++; } } // -- GODOT start -- //}); // -- GODOT end -- } void AutoencoderFilter::computeTileSize() { const int minTileSize = 3*overlap; const int estimatedBytesPerPixel = mayiuse(avx512_common) ? estimatedBytesPerPixel16 : estimatedBytesPerPixel8; const int64_t maxTilePixels = (int64_t(maxMemoryMB)*1024*1024 - estimatedBytesBase) / estimatedBytesPerPixel; tileCountH = 1; tileCountW = 1; tileH = roundUp(H, alignment); tileW = roundUp(W, alignment); // Divide the image into tiles until the tile size gets below the threshold while (int64_t(tileH) * tileW > maxTilePixels) { if (tileH > minTileSize && tileH > tileW) { tileCountH++; tileH = max(roundUp(ceilDiv(H - 2*overlap, tileCountH), alignment) + 2*overlap, minTileSize); } else if (tileW > minTileSize) { tileCountW++; tileW = max(roundUp(ceilDiv(W - 2*overlap, tileCountW), alignment) + 2*overlap, minTileSize); } else break; } // Compute the final number of tiles tileCountH = (H > tileH) ? ceilDiv(H - 2*overlap, tileH - 2*overlap) : 1; tileCountW = (W > tileW) ? ceilDiv(W - 2*overlap, tileW - 2*overlap) : 1; if (device->isVerbose(2)) { std::cout << "Tile size : " << tileW << "x" << tileH << std::endl; std::cout << "Tile count: " << tileCountW << "x" << tileCountH << std::endl; } } template std::shared_ptr AutoencoderFilter::buildNet() { H = color.height; W = color.width; // Configure the network int inputC; void* weightPtr; if (srgb && hdr) throw Exception(Error::InvalidOperation, "srgb and hdr modes cannot be enabled at the same time"); if (color && !albedo && !normal && weightData.hdr) { inputC = 3; weightPtr = hdr ? weightData.hdr : weightData.ldr; } else if (color && albedo && !normal && weightData.hdr_alb) { inputC = 6; weightPtr = hdr ? weightData.hdr_alb : weightData.ldr_alb; } else if (color && albedo && normal && weightData.hdr_alb_nrm) { inputC = 9; weightPtr = hdr ? weightData.hdr_alb_nrm : weightData.ldr_alb_nrm; } else { throw Exception(Error::InvalidOperation, "unsupported combination of input features"); } if (!output) throw Exception(Error::InvalidOperation, "output image not specified"); if ((color.format != Format::Float3) || (albedo && albedo.format != Format::Float3) || (normal && normal.format != Format::Float3) || (output.format != Format::Float3)) throw Exception(Error::InvalidOperation, "unsupported image format"); if ((albedo && (albedo.width != W || albedo.height != H)) || (normal && (normal.width != W || normal.height != H)) || (output.width != W || output.height != H)) throw Exception(Error::InvalidOperation, "image size mismatch"); // Compute the tile size computeTileSize(); // If the image size is zero, there is nothing else to do if (H <= 0 || W <= 0) return nullptr; // Parse the weights const auto weightMap = parseTensors(weightPtr); // Create the network std::shared_ptr> net = std::make_shared>(device, weightMap); // Compute the tensor sizes const auto inputDims = memory::dims({1, inputC, tileH, tileW}); const auto inputReorderDims = net->getInputReorderDims(inputDims, alignment); //-> concat0 const auto conv1Dims = net->getConvDims("conv1", inputReorderDims); //-> temp0 const auto conv1bDims = net->getConvDims("conv1b", conv1Dims); //-> temp1 const auto pool1Dims = net->getPoolDims(conv1bDims); //-> concat1 const auto conv2Dims = net->getConvDims("conv2", pool1Dims); //-> temp0 const auto pool2Dims = net->getPoolDims(conv2Dims); //-> concat2 const auto conv3Dims = net->getConvDims("conv3", pool2Dims); //-> temp0 const auto pool3Dims = net->getPoolDims(conv3Dims); //-> concat3 const auto conv4Dims = net->getConvDims("conv4", pool3Dims); //-> temp0 const auto pool4Dims = net->getPoolDims(conv4Dims); //-> concat4 const auto conv5Dims = net->getConvDims("conv5", pool4Dims); //-> temp0 const auto pool5Dims = net->getPoolDims(conv5Dims); //-> temp1 const auto upsample4Dims = net->getUpsampleDims(pool5Dims); //-> concat4 const auto concat4Dims = net->getConcatDims(upsample4Dims, pool4Dims); const auto conv6Dims = net->getConvDims("conv6", concat4Dims); //-> temp0 const auto conv6bDims = net->getConvDims("conv6b", conv6Dims); //-> temp1 const auto upsample3Dims = net->getUpsampleDims(conv6bDims); //-> concat3 const auto concat3Dims = net->getConcatDims(upsample3Dims, pool3Dims); const auto conv7Dims = net->getConvDims("conv7", concat3Dims); //-> temp0 const auto conv7bDims = net->getConvDims("conv7b", conv7Dims); //-> temp1 const auto upsample2Dims = net->getUpsampleDims(conv7bDims); //-> concat2 const auto concat2Dims = net->getConcatDims(upsample2Dims, pool2Dims); const auto conv8Dims = net->getConvDims("conv8", concat2Dims); //-> temp0 const auto conv8bDims = net->getConvDims("conv8b", conv8Dims); //-> temp1 const auto upsample1Dims = net->getUpsampleDims(conv8bDims); //-> concat1 const auto concat1Dims = net->getConcatDims(upsample1Dims, pool1Dims); const auto conv9Dims = net->getConvDims("conv9", concat1Dims); //-> temp0 const auto conv9bDims = net->getConvDims("conv9b", conv9Dims); //-> temp1 const auto upsample0Dims = net->getUpsampleDims(conv9bDims); //-> concat0 const auto concat0Dims = net->getConcatDims(upsample0Dims, inputReorderDims); const auto conv10Dims = net->getConvDims("conv10", concat0Dims); //-> temp0 const auto conv10bDims = net->getConvDims("conv10b", conv10Dims); //-> temp1 const auto conv11Dims = net->getConvDims("conv11", conv10bDims); //-> temp0 const auto outputDims = memory::dims({1, 3, tileH, tileW}); // Allocate two temporary ping-pong buffers to decrease memory usage const auto temp0Dims = getMaxTensorDims({ conv1Dims, conv2Dims, conv3Dims, conv4Dims, conv5Dims, conv6Dims, conv7Dims, conv8Dims, conv9Dims, conv10Dims, conv11Dims }); const auto temp1Dims = getMaxTensorDims({ conv1bDims, pool5Dims, conv6bDims, conv7bDims, conv8bDims, conv9bDims, conv10bDims, }); auto temp0 = net->allocTensor(temp0Dims); auto temp1 = net->allocTensor(temp1Dims); // Allocate enough memory to hold the concat outputs. Then use the first // half to hold the previous conv output and the second half to hold the // pool/orig image output. This works because everything is C dimension // outermost, padded to K floats, and all the concats are on the C dimension. auto concat0Dst = net->allocTensor(concat0Dims); auto concat1Dst = net->allocTensor(concat1Dims); auto concat2Dst = net->allocTensor(concat2Dims); auto concat3Dst = net->allocTensor(concat3Dims); auto concat4Dst = net->allocTensor(concat4Dims); // Transfer function std::shared_ptr transferFunc = makeTransferFunc(); // Autoexposure if (auto tf = std::dynamic_pointer_cast(transferFunc)) { if (isnan(hdrScale)) net->addAutoexposure(color, tf); else tf->setExposure(hdrScale); } // Input reorder auto inputReorderDst = net->castTensor(inputReorderDims, concat0Dst, upsample0Dims); inputReorder = net->addInputReorder(color, albedo, normal, transferFunc, alignment, inputReorderDst); // conv1 auto conv1 = net->addConv("conv1", inputReorder->getDst(), temp0); // conv1b auto conv1b = net->addConv("conv1b", conv1->getDst(), temp1); // pool1 // Adjust pointer for pool1 to eliminate concat1 auto pool1Dst = net->castTensor(pool1Dims, concat1Dst, upsample1Dims); auto pool1 = net->addPool(conv1b->getDst(), pool1Dst); // conv2 auto conv2 = net->addConv("conv2", pool1->getDst(), temp0); // pool2 // Adjust pointer for pool2 to eliminate concat2 auto pool2Dst = net->castTensor(pool2Dims, concat2Dst, upsample2Dims); auto pool2 = net->addPool(conv2->getDst(), pool2Dst); // conv3 auto conv3 = net->addConv("conv3", pool2->getDst(), temp0); // pool3 // Adjust pointer for pool3 to eliminate concat3 auto pool3Dst = net->castTensor(pool3Dims, concat3Dst, upsample3Dims); auto pool3 = net->addPool(conv3->getDst(), pool3Dst); // conv4 auto conv4 = net->addConv("conv4", pool3->getDst(), temp0); // pool4 // Adjust pointer for pool4 to eliminate concat4 auto pool4Dst = net->castTensor(pool4Dims, concat4Dst, upsample4Dims); auto pool4 = net->addPool(conv4->getDst(), pool4Dst); // conv5 auto conv5 = net->addConv("conv5", pool4->getDst(), temp0); // pool5 auto pool5 = net->addPool(conv5->getDst(), temp1); // upsample4 auto upsample4Dst = net->castTensor(upsample4Dims, concat4Dst); auto upsample4 = net->addUpsample(pool5->getDst(), upsample4Dst); // conv6 auto conv6 = net->addConv("conv6", concat4Dst, temp0); // conv6b auto conv6b = net->addConv("conv6b", conv6->getDst(), temp1); // upsample3 auto upsample3Dst = net->castTensor(upsample3Dims, concat3Dst); auto upsample3 = net->addUpsample(conv6b->getDst(), upsample3Dst); // conv7 auto conv7 = net->addConv("conv7", concat3Dst, temp0); // conv7b auto conv7b = net->addConv("conv7b", conv7->getDst(), temp1); // upsample2 auto upsample2Dst = net->castTensor(upsample2Dims, concat2Dst); auto upsample2 = net->addUpsample(conv7b->getDst(), upsample2Dst); // conv8 auto conv8 = net->addConv("conv8", concat2Dst, temp0); // conv8b auto conv8b = net->addConv("conv8b", conv8->getDst(), temp1); // upsample1 auto upsample1Dst = net->castTensor(upsample1Dims, concat1Dst); auto upsample1 = net->addUpsample(conv8b->getDst(), upsample1Dst); // conv9 auto conv9 = net->addConv("conv9", concat1Dst, temp0); // conv9b auto conv9b = net->addConv("conv9b", conv9->getDst(), temp1); // upsample0 auto upsample0Dst = net->castTensor(upsample0Dims, concat0Dst); auto upsample0 = net->addUpsample(conv9b->getDst(), upsample0Dst); // conv10 auto conv10 = net->addConv("conv10", concat0Dst, temp0); // conv10b auto conv10b = net->addConv("conv10b", conv10->getDst(), temp1); // conv11 auto conv11 = net->addConv("conv11", conv10b->getDst(), temp0, false /* no relu */); // Output reorder outputReorder = net->addOutputReorder(conv11->getDst(), transferFunc, output); net->finalize(); return net; } std::shared_ptr AutoencoderFilter::makeTransferFunc() { if (hdr) return std::make_shared(); else if (srgb) return std::make_shared(); else return std::make_shared(); } // -- GODOT start -- // Godot doesn't need Raytracing filters. Removing them saves space in the weights files. #if 0 // -- GODOT end -- // -------------------------------------------------------------------------- // RTFilter // -------------------------------------------------------------------------- namespace weights { // LDR extern unsigned char rt_ldr[]; // color extern unsigned char rt_ldr_alb[]; // color, albedo extern unsigned char rt_ldr_alb_nrm[]; // color, albedo, normal // HDR extern unsigned char rt_hdr[]; // color extern unsigned char rt_hdr_alb[]; // color, albedo extern unsigned char rt_hdr_alb_nrm[]; // color, albedo, normal } RTFilter::RTFilter(const Ref& device) : AutoencoderFilter(device) { weightData.ldr = weights::rt_ldr; weightData.ldr_alb = weights::rt_ldr_alb; weightData.ldr_alb_nrm = weights::rt_ldr_alb_nrm; weightData.hdr = weights::rt_hdr; weightData.hdr_alb = weights::rt_hdr_alb; weightData.hdr_alb_nrm = weights::rt_hdr_alb_nrm; } // -- GODOT start -- #endif // -- GODOT end -- // -------------------------------------------------------------------------- // RTLightmapFilter // -------------------------------------------------------------------------- namespace weights { // HDR extern unsigned char rtlightmap_hdr[]; // color } RTLightmapFilter::RTLightmapFilter(const Ref& device) : AutoencoderFilter(device) { weightData.hdr = weights::rtlightmap_hdr; hdr = true; } std::shared_ptr RTLightmapFilter::makeTransferFunc() { return std::make_shared(); } } // namespace oidn