#include "equation-solver.h" #define _USE_MATH_DEFINES #include #define TOO_LARGE_RATIO 1e12 namespace msdfgen { int solveQuadratic(double x[2], double a, double b, double c) { // a = 0 -> linear equation if (a == 0 || fabs(b)+fabs(c) > TOO_LARGE_RATIO*fabs(a)) { // a, b = 0 -> no solution if (b == 0 || fabs(c) > TOO_LARGE_RATIO*fabs(b)) { if (c == 0) return -1; // 0 = 0 return 0; } x[0] = -c/b; return 1; } double dscr = b*b-4*a*c; if (dscr > 0) { dscr = sqrt(dscr); x[0] = (-b+dscr)/(2*a); x[1] = (-b-dscr)/(2*a); return 2; } else if (dscr == 0) { x[0] = -b/(2*a); return 1; } else return 0; } static int solveCubicNormed(double x[3], double a, double b, double c) { double a2 = a*a; double q = (a2 - 3*b)/9; double r = (a*(2*a2-9*b) + 27*c)/54; double r2 = r*r; double q3 = q*q*q; double A, B; if (r2 < q3) { double t = r/sqrt(q3); if (t < -1) t = -1; if (t > 1) t = 1; t = acos(t); a /= 3; q = -2*sqrt(q); x[0] = q*cos(t/3)-a; x[1] = q*cos((t+2*M_PI)/3)-a; x[2] = q*cos((t-2*M_PI)/3)-a; return 3; } else { A = -pow(fabs(r)+sqrt(r2-q3), 1/3.); if (r < 0) A = -A; B = A == 0 ? 0 : q/A; a /= 3; x[0] = (A+B)-a; x[1] = -0.5*(A+B)-a; x[2] = 0.5*sqrt(3.)*(A-B); if (fabs(x[2]) < 1e-14) return 2; return 1; } } int solveCubic(double x[3], double a, double b, double c, double d) { if (a != 0) { double bn = b/a, cn = c/a, dn = d/a; // Check that a isn't "almost zero" if (fabs(bn) < TOO_LARGE_RATIO && fabs(cn) < TOO_LARGE_RATIO && fabs(dn) < TOO_LARGE_RATIO) return solveCubicNormed(x, bn, cn, dn); } return solveQuadratic(x, b, c, d); } }