// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include <assert.h> #include <string.h> meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size) { assert(index_count % 3 == 0); assert(vertex_size > 0 && vertex_size <= 256); meshopt_Allocator allocator; meshopt_VertexFetchStatistics result = {}; unsigned char* vertex_visited = allocator.allocate<unsigned char>(vertex_count); memset(vertex_visited, 0, vertex_count); const size_t kCacheLine = 64; const size_t kCacheSize = 128 * 1024; // simple direct mapped cache; on typical mesh data this is close to 4-way cache, and this model is a gross approximation anyway size_t cache[kCacheSize / kCacheLine] = {}; for (size_t i = 0; i < index_count; ++i) { unsigned int index = indices[i]; assert(index < vertex_count); vertex_visited[index] = 1; size_t start_address = index * vertex_size; size_t end_address = start_address + vertex_size; size_t start_tag = start_address / kCacheLine; size_t end_tag = (end_address + kCacheLine - 1) / kCacheLine; assert(start_tag < end_tag); for (size_t tag = start_tag; tag < end_tag; ++tag) { size_t line = tag % (sizeof(cache) / sizeof(cache[0])); // we store +1 since cache is filled with 0 by default result.bytes_fetched += (cache[line] != tag + 1) * kCacheLine; cache[line] = tag + 1; } } size_t unique_vertex_count = 0; for (size_t i = 0; i < vertex_count; ++i) unique_vertex_count += vertex_visited[i]; result.overfetch = unique_vertex_count == 0 ? 0 : float(result.bytes_fetched) / float(unique_vertex_count * vertex_size); return result; }